
Naval Research Laboratory
Washington, DC e0375-5000

AD- A241 242 NRL Memorandum Report 6885

Scheduling Link Activation
in Multihop Radio Networks

by Means of
Hopfield Neural Network Techniques

CRAIG M. BARNHART AND JEFFREY E. WIESELTHIER

Communication Systems Branch
Information Technology Division

ANTHONY EPHREMIDES

Locus, Inc.
Alexandria, Virginia

and

University of Mariard
College Park, Maryland

September 3, 1991

O)TT

91-12261

Approved for public release, distribution unlimited.

NRLINST 5600.3B

REPORT DOCUMENTATION PAGE Form Approved

Pubic e fortig burden tor the% colletion of ithormatlon is estimated to avieage i hOur Dee 'esmlt'e inctuoig the time tor reviewin.h istructions wilrrriing e.rtflQq cat. oge,
gat m-gand miaintining the 4ata ner, ed no co lt no it tre..w tg fre o 'neieron of , Mftor-ation eor CO eflth S garong this burden I S iMmte of fnV other a4ot of INS
contectlon of intormatoOn. in~i imang sugge iot for reducing this curen to wasniglttOn Ne Galttes ifevncet. Directorate for information Oceratuons and Reoonts id i Id

1
erso'

Oains t ivV. Wite 1204 Arbinton VA 22202-4302. and to the O ,ce of M haqe.ert ad budget d#oerwok Reauction Proe.t 1C704.0 tag) wisrington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. RWPORT DATE 3. REPORT TYPE AND DATES COVERED

1991 September 3 Interim Report 7/90 - 4/91
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Scheduling Link Activation in Multihop Radio Network
by Means of Hopfield Neural Network Techniques PE: 61153N

__ PR: RR021-0542
6. AUTHORAS) WU: DN480-557
Craig M. Barnhart, Jeffrey E. Wieselthier and Anthony Ephremides* DN159-036

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Research Laboratory
Washington, DC 20375-5000 NRL Memorandum
Code 5521 Reis*'t 6R85

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Arlington, VA 22217

11. SUPPLEMENTARY NOTES

*Anthony Ephremides is with the University of Maryland and Locus, Inc.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

We address the problem of "link activation" or "scheduling" in multihop packet
radio networks, a contention-free form of channel access that is appropriate for many
military communication applications. It is well known that this problem, in almost all of its
forms, is a combinatorial-optimization problem of high complexity. We approach this
problem by the use of a Hopfield neural network model in which the method of Lagrange
multipliers is used to vary dynamically the values of the coefficients used in the connection
weights.

Two forms of the scheduling problem are considered. In the first, communication
requirements are specified in terms of the number of packets that must be transmitted over
each link in the network. In the second, an additional constraint is incorporated, namely
that the sequence of link activations along any multihop path must be preserved.

Extensive software simulation results demonstrate the effectiveness of this approach
in producing schedules of optimal length. Issues associated with the extension of this
approach to the joint routing/scheduling problem are discussed.

14. SUBJECT TERMS 1S. NUMBER OF PAGES
Communication network, Hopfield network, 100Multiple access, Neural network 16.PRICECODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE OF ABSTRACT

UNCLASSIFIED NCLASSIFIED I UNCLASSIFIED IINLIMITED
NSN 75,O01-280-S500 Staroarc Form 298 (Rev 2.891

1 'if b .

CONTENTS

1.0 INTRODUCTION .. 1
1.1 Outline of the Report ... 2

2.0 THE PROBLEM ... 3
2.1 Two Scheduling Problems: Nonsequential and Sequential Activation 4
2.2 Scheduling Conflicts .. 4
2.3 Communication Requirements .. 5

3.0 BOUNDS AND HEURISTICS FOR MINIMUM-LENGTH SCHEDULING 7
3.1 A Lower Bound on the Schedule Length 8

3.1.1 A Lower Bound on the Minimum Length of a Nonsequential-
Activation Schedule ... 8

3.1.2 A Lower Bound on the Minimum Length of a Sequential-
Activation Schedule ... 8

3.2 Heuristics for Scheduling .. 10
3.2.1 The NAS Heuristic ... 10
3.2.2 The SAS Heuristic .. 11

3.3 Performance of Scheduling Heuristics .. 11
3.3.1 Performance of the NAS Heuristic 11
3.3.2 Performance of the SAS Heuristic .. 14

4.0 A NEURAL NETWORK MODEL FOR SCHEDULING 15
4.1 Formulation of the Constraint-Energy Terms 19

4.1.1 The Basic Model ... 19
4.1.2 Comments on Constraint Satisfaction 22

4.2 Determination of Connection Weights and Bias Currents 22
4.3 Use of the Method of Lagrange Multipliers to Determine Connection

W eights .. 23
4.3.1 Multiple Lagrange Multipliers .. 24

4.4 Equations of Motion ... 24
4.5 Variations of the Basic Scheduling NN Model 26

4.5.1 The Condensed NAS Model ... 26
4.5.2 The Reduced SAS Model ... 27
4.5.3 The Adjustable-Length Model ... 30
4.5.4 Gaussian Simulated Annealing ... 31

5.0 SIMULATION ISSUES ... 32
5.1 A Binary Interpretation of the Analog State 34
5.2 Termination Criteria .. 35
5.3 Two Methods of Eval,_,ting NN Performance 36
5.4 A Modification that has Improved Simulation Results 36

6.0 NAS SIMULATION RESULTS ... 37
6.1 The Condensed NAS Model Using the Monte-Carlo Approach 38
6.2 Parameter Sensitivity .. 39

6.2.1 Bias Sensitivity .. 40
6.2.2 LM Time Constant Sensitivity ... 40
6.2.3 Sensitivity to 0 .. 42

6 3 A Mom Difficuit NAS Problem Instance 44

ii

6.3.1 A Third NAS Problem Instance ... 46
6.4 Some Improvements to the NN Model .. 48

6.4.1 Time-Varying 03 ... 48
6.4.2 A Traffic-Based Heuristic .. 49

6.5 Evaluation of the NN Improvements via the Multiple-Instance
A pproach .. 50
6.5.1 The Use of the Monotonic J3-Function: Simulations A - C 51
6.5.2 The Use of the Nonmonotonic fl-Function: Simulations D - E 51
6.5.3 The Use of a Traffic-Based Bias: Simulations E - H 52
6.5.4 NN Scheduling of Set (7,7) ... 52

6.6 An Evaluation of the Basic and the Adjustable-Length NAS Models 53
6.7 Conclusions on the NAS NN Model ... 56

7.0 SAS SIMULATION RESULTS .. 57
7.1 Sequential-Activation Scheduling with the Monte-Carlo Approach 57
7.2 Skewed Initialization .. 60
7.3 Skewed Randomization ... 63
7.4 Evaluation of Skewed Initialization and/or Randomization via Monte-

Carlo Sim ulation ... 65
7.5 Evaluation of Skewed Initialization and/or Randomization via Multiple-

Instance Simulation ... 67
7.5.1 SAS Multiple-Instance Simulation Issues 67
7.5.2 Evaluation of the Couiditiornally-Fixed-Value and the Hybrid

Form of Initialization .. 68
7.5.3 Evaluation of the Path-Length-Dependent Form of Initialization 71
7.5.4 SAS of the Problem Instances with Known Minimum Schedule

Lengths of 8 Slots ... 72
7.6 Conclusions on the SAS NN Model ... 74

8.0 THE JOINT ROUTING-SCHEDULING PROBLEM 74
8.1 Problem Formulation .. 78
8.2 A Joint Routing-Scheduling NN Model 78
8.3 A lternate M odels ... 83

9.0 CONCLUSIONS .. 83

REFERENCES .. 85

APPENDIX A - TABLES OF THE PATHS AND PROBLEM INSTANCES
ASSOCIATED WITH THE NETWORK OF FIGURE 2.1 88

APPENDIX B - TIGHTENING THE SAS BOUND (AN EXAMPLE) 94

%--qe s on ,o E /--

NTIS GA&I
DTIC TAB ,
na thxrnnounced 0
3uwttficntion

'\4- B -_______-_____

D i ljribu i onl(-

Availability Codes
$Atai] S id/ r

'Dit Sposial

SCHEDULING LINK ACTIVATION
IN MULTIHOP RADIO NETWORKS

BY MEANS OF
HOPFIELD NEURAL NETWORK TECHNIQUES

1.0 INTRODUCTION

In this report, we address the problem of "link activation" or "scheduling" in multihop

packet radio networks [1, 2, 3]. In multihop wireless networks, channel access rules are based on

either contention-based protocols or interference-free scheduled transmissions. For a variety of

reasons discussed in [2] and [4], the use of interference-free scheduled transmissions is a

preferable mode of access in many applications. Under this channel-access mechanism, the nodes

are assigned non-interfering, periodically-recurring, time slots in which to transmit their packets.

In generating these transmission schedules, it is possible to take advantage of the spatial separation

of the nodes, thus permitting two nodes separated by a sufficiently large distance to transmit

simultaneously.

The first problem considered in connection with this approach has been the determination

of schedules of minimum length that satisfy the specified end-to-end communication requirements

between a number of source-destination (SD) pairs in the network. It is by now well known that

this problem, in almost all of its forms, is a combinatorial-optimization problem of high complexity

(NP-complete) [5, 6, 7]. In problems of this type, the communication requirements are normally

specified simply in terms of the number of packets that must be transmitted over each physical link'
in the network. We also consider the more-difficult case in which the sequence of link activations

along any multihop path in the schedule must be preserved; i.e., the case in which, for each path,

the link emanating from the source must be activated first, the next link second, and so on. This

problem is shown to be NP-complete, and a heuristic for a variation of the problem in wireline

(i.e., nonradio) networks is presented in [8]. The advantage of sequential link activation is that it

reduces end-to-end delay in the network. We also discuss extensions of our model to the joint

routing-scheduling problem. Although the issues of routing and scheduling in multihop packet

radio networks are highly interdependent, few studies have addressed them jointly (see e.g., [6, 7,

9]).

1 In this rcport, we reel to she communication channel between two nodes as a physica link. A link corresponds
to a "virtual" link that corresponds to a single unit of traffic that must traverse a given physical link. Thus, if n
units of traffic are to be deli-ered on the physical link that connects nodes i and j, there are n parallel "links" between
nodes i andj.

Manuscnpt approved July 2, 1991

Because of the complexity of scheduling problems, heuristics are generally used to produce

suboptimal link-activation schedules. An alternate approach to the link-activation problem is the

use of a Hopfield neural nework (NN) [10] to generate good, although nul necessarily optimal,

communication schedules [11]. Under this approach, the scheduling problem is transformed into a

graph-coloring problem, with the objective of determining a coloring of the graph that requires the

minimum number of colors, where each color corresponds to a time slot. In this report, we

present an improved formulation of a Hopfield NN model for the scheduling problem, in which the

method of Lagrange multipliers is used to vary dynamically the values of the coefficients used in

the connection weights of the NN. Extensive simulation results demonstrate the effectiveness of
the model. Portions of this study are also discussed in [12, 13, 14].

In an earlier phase of this study, Hopfield NN models were developed for a routing
problem in which congestion is minimized in multihop radio networks [15, 16, 171. The high

degree of success achieved was, in fact, a major factor in our application of this approach to

scheduling problems as well.

1.1 Outline of the Report

In Section 2 we define the two versions of the scheduling problem that are addressed in this

report, i.e., the nonsequential- and sequential-activation problems. Scheduling conflicts are

defined, and the multihop radio network that has served as the testing ground for our simulations is

introduced.

In Section 3 we present lower bounds on the length of schedules that satisfy
communication requirements for both versions of the problem, as well as heuristics for the

determination of short (although not necessarily minimum-length) schedules. These bounds and

heuristics are helpful in assessing the performance of the NN model.

In Section 4 we define our NN model for the scheduling problem. Constraints are

established that reflect the desired behavior of the NN, i.e., the generation of schedules of

minimum length. These constraints are expressed in the form of energy terms in the Lyapunov

energy function, thus permitting the determination of the corresponding connection weights and

bias currents, which in turn leads to the equations of motion that characterize system evolution. A

key feature of our model, which has been crucial to its high degree of success, is the use of he

method of Lagrangc .r'r!ipliers to vary the connection weights dynamically as the system state

evolves. Several variations of the NN model are discussed.

2

In Section 5 we discuss issues associated with the simulation process. These include the

generation of initial NN states, the interpretation of system state, termination criteria, and methods

to evaluate performance.

In Section 6 we discuss simulation results for the nonsequential-activation scheduling

(NAS) problem. The ability of our NN model to find optimum schedules for a number of diverse

problem instances, including highly constrained ones, is demonstrated by means of simulations of

several variations of the model. These simulations also reveal that the NN model is relatively

insensitive to variations in the parameter values and the communication requirements.

Modifications that further enhance the NN performance are developed and evaluated.

In Section 7 we discuss simulation results for the sequential-activation scheduling (SAS)

problem. Simulations of our SAS NN model indicate that the SAS problem is significantly more

difficult than the NAS problem. Modifications to the model, based on conventional heuristic

methods, are implemented to give a model that generates optimal, or nearly optimal, schedules for

a number of different problem instances. The length of the optimum schedule is difficult to

calculate, and, for several problem instances, has only been determined by the NN's generation of

a schedule whose length matches a known lower bound.

In Section 8 we address the joint routing-scheduling problem. We demonstrate that the

problems of routing and scheduling are not separable. Therefore, it would be desirable to develop

a NN model (or other heuristic approach) that incorporates the interactions between routing and

scheduling. We outline te components of a NN model for this problem; however, the resulting

model is extremely complex, except for small problems, and has not been implemented.

Finally, in Section 9 we present our conclusions from this study.

2.0 THE PROBLEM

Given the connectivity graph of a radio communication network, a set of Nsd SD pairs, and

a multihop path connecting each SD pair, determine a link-activation schedule of minimum length

that will deliver one packet2 between each source and the corresponding destination such that no

scheduling conflicts occur. Before addressing the nature of scheduling conflicts, we define two

versions of the scheduling problem.

2 The model can easily be extended to incorporate nonunit traffic requirements.

3

2.1 Two Scheduling Problems: Nonsequential and Sequential Activation

In the case of nonsequential-activation scheduling (NAS), the goal is to schedule each link

the specified number of times in each activation cycle, without regard to the order in which the

links of any path are activated. In the more-difficult case of sequential-activation scheduling

(SAS), the sequence of link activations along any multihop path must be preserved; i.e., for each

path, the link emanating from the source must be activated first, the next link second, and so on.

The same total traffic (in terms of the number of activations of each link per cycle) is supported

under both models; however, the NAS model may result in greater end-to-end packet delay

because several cycles may be needed to transport a packet from source to destination. Actually, in

most cases throughput (measured in terms of packets per slot) is greater using NAS than SAS

because removal of the sequentiality constraint often permits satisfaction of communication

requirements in fewer slots.

2.2 Scheduling Conflicts

We distinguish threc types of scheduling conflicts, i.e., "primary," "secondary," and
"sequence." These are described below.

Primary Conflicts

In this report we say that a primary conflict occurs if:

1. A node has been scheduled to transmit and receive in the same slot; or

2. A node has been scheduled to receive from two or more nodes in the same slot; or

3. A node has been scheduled to transmit to two or more nodes in the same slot.

For rather restricted systems, in which each node has a single transmitter and a single receiver,

such conflicts prevent the correct reception of a packet. In systems with multiple receivers

available at each platform, and/or a capability for successful simultaneous transmission and

reception, the notion of primary conflict can be redefined easily to incorporate such less-restrictive

constraints.

Secondary Conflicts

We say that secondary conflicts occur when additional signals are transmitted in the same

neighborhood as the desired receiver, although not directed to that receiver. Whether or not they

are destructive depends on the nature of the signaling (i.e., coding and modulation) scheme that is

being used. For example, single-channel, narrowband systems normally cannot tolerate any

4

secondary conflicts, unless the interfering signals are of considerably lower power than the desired

signal. However, in spread-spectrum code-division multiple-access (CDMA) systems, several

interfering signals transmitted on codes that are quasiorthogonal to that of the desired signal can
typically be tolerated; the probability of packet error in frequency-hopping systems depends on the

number of frequency bins over which the signal is hopped and on the properties of the error-

control coding that is used [4]. In spread-spectrum systems that use orthogonal CDMA codes this

is not a problem; any number of simultaneous transmissions can be tolerated. Since our main

objective is to demonstrate the capability of the NN approach rather than the precise modeling of

the interference, we assume here that such orthogonal spread-spectrum signaling is used, and thus
the problem of secondary conflicts is not addressed. However, in Section 4.1.1, we show how

the impact of secondary conflicts may be easily included in our model to handle the case of

nonorthogonal CDMA or non-spread-spectrum systems.

Sequence Conflicts

The sequential schedling requirement is a further restriction of the problem. We declare

that a sequence conflict occurs if, within the schedule of activation, two or more links are activated

out of order. As mentioned before, under the SAS model we require that along a SD path the links

are activated in the order in which they appear in the path, starting with the link that emanates from

the source node.

Thus, overall, we declare :he occurrence of a scheduling conflict if there is a primary

conflict, or if there is a sequence conflict. However, sequence conflicts are not addressed in the

formulation of the NAS problem.

2.3 Communication Requirements

The testing ground of our approach to this problem and all the relevant simulations

presented in this report are based on scheduling the delivery of one unit of traffic from each of a

specified set of source nodes to a specified set of destination nodes in the 24-node network shown

in Fig. 2.1. In each case a single path between each of the SD pairs is prespecified. Table 2.1

Pives one example of a set of paths between ten specified SD pairs. One packet is to be delivered
from each source node to each destination node in the duration of every activation cycle. The

resulting communication requirements are shown in Fig. 2.2; e.g., each link represented by a

single arrow corresponds to a communication requirement of one packet, each double arrow to two

packets, and each triple arrow to three packets.

5

2 33

Figure 2.1. An example 24-node network

Table 2.1. A set of paths connecting 10 SD pairs in the network of Fig. 2.1
____ ____ ___Path

1 11

SDpa1:[424 4 5 13 20 24
SD air2:[7,17] 7 14 15 17
SDpair3: 9,161 9 12 13 19 14 15 16
SDpair4: [1,191 1 4 5 13 19

SD pair 5: [5,11] 5 6 11SD pair 6:21,61 21 22 20 13 5 6
SD air7: [1,101 1 2 3 6 8 9 10
SD pair : [7,18] 3 4 7 14 15 18
SD pair 9: [2,12] 2 4 7 12

SD pair 10: [14,8] 14 7 11 8

Examples of primary conflicts that may occur in the network shown in Fig. 2.2 include the

following: (1) If node 1 is scheduled to transmit to node 2 in the same slot in which node 2 is

scheduled to transmit to node 3, node 2 is scheduled to both transmit and receive in the same slot.

(2) If nodes 2 and 3 are both scheduled to transmit to node 4 at the same time, node 4 is scheduled

to receive from two nodes in the same slot. (3) Node 1 is scheduled to transmit to two nodes in the

same slot if it is scheduled to transmit to both nodes 2 and 4 at the same time.

6

Figure 2.2. Link communication requirements for the set of paths listed in Table 2.1

An example of secondary conflict arises if there are simultaneous transmissions from node 2 to 3

and from node 1 to 4. Although the message transmitted by node 2 is intended for node 3, it also

collides with node 1l's transmission because node 4 is within range of node 2. Whether or not this

interference is destructive depends on the type of signaling that is used. In a narrowband systemn

it is generally destructive. In a system with quasiorthogonal CDMA codes, it will most likely not

be. However, if nodes 5 and 7 (which are also neighbors of node 4) also transmit at the same

time, the combined effect of their interference m'ay raise the packet error probability significantly.

3.0 BOUNDS AND HEURISTICS FOR MINIMUM-LENGTH SCHEDULING

It is well known that the problem of determining a minimum-length schedule that satisfies a

specified end-to-end communication demand, in almost all of its forms, is NP-complete [5, 6, 7].

Therefore, unless the schedule that has been found by a NN (or by means of some he'lristi,

algorithm) has a length equal to a known lower bound on the sciledufr-length, there is no way to

determine whether the schedule is optimal (other than exhaustive search, which is practical only for

relatively small problems). Thus, a reasonably tight lower bound on the length of the minimum-

length schedule is needed to aid in determining whether a schedlule meets the desired objet a2 , of

being (at least) nearly minimum in length The 1ower bound, on the minimum length of

7

•~~1
12 9

,mll mm nu m~umnnnm' . .

nonsequential-activation schedules that are established in [6] and [31 are sunimarized in Section

3.1.1. The lower bound on the minimum lenigth of sequential-activation schedules, which is

introduced in Section 3.1.2, is a bound that we have developed to address the restrictions

introduced by the sequential scheduling requirement.

3.1 A Lower Bound on the Schedule Length

3.1.1 A Lower Bound on the Minimum Length of a Nonsequential-Activatic-1 Schedule

For the case of ::onsequential-activation scheduling (NAS), we use the lower schedule-

length bound developed ty Post et al. [3]. This is given by

B. = max{Bd,BA},

where
Bnas is a lower bound on the schedule length without the sequence constraint,

Bd = max {deg(n)},
Vnodes n

BA = max {f(n,o)+ f(n,p)+ f(o,p)},
Vnodes no,p

f(n,o) = the number of packets that must traverse
the physical link (n,o) that c inects nodes n and o.

The degree of a node n (denoted deg(n)) is defined to be the sum of all flows into it plus all flows

out of it. ",'ie inclusion of the expression BA tightens the lower bound Bna, by detecting the

presence of three-node cycles, which may cause the minimum schedule length A* to be greater than

Ed. For example, the .hree-node cycle shown in Fig. 3.1 clearly has Bd = 2, BA = 3, and A* = 3.

Figure 3.1. A three node cycle

3.1.2 A Lower Bound on the Minimum Length of a Sequential-Activation Schedule

For the sequential-activation scheduling (SAS) problem, we have developed a lower bound

on the schedule length, denoted Bsa,, that addresses the additional restrictions introduced by the

SAS requirement. The NAS bound B,,, is also a lower bound on the minimum sequential-

activation schedule length, which may be tightened by noting that the length of a conflict-free

8

sequential-activation schedule can be no shorter than the length of the longest path in the network.

The observation that the positions that moderate- and high-degree nodes hold on the paths may

increase the minimum schedule length is also used to tighten Bas. The new bound is given by

so-sj

Bs s =max B;,B,max(L(i)) ,

where

B, = max {deg(n)+Fa(n)+La(n)},dVnodes n

F, (n) = The minimum number of slots required prior
to the first legal activation of node n,

La(n) = The minimum number of slots required to complete the activation
of all paths after the last activation of node n.

Since BA and the maximum path length are clearly bounds for A*, it suffices to show that B; is

also a lower bound. The proof that B; is indeed a bound for A* proceeds simply as follows.

For each node n, let £n denote the set of (unit-) traffic carrying links that include node

n; let us also refer to the Aih link of the path between SD pair i as the ij-link. Note that

La,(n) = min (L(i) -j),

where L(i) is the length, in hops, of the path between SD pair .

Clearly, in order to activate links sequentially, for each node n a minimum of Fa(n)

slots must be used prior to activating any of the links in in. Additionally, a minimum of

deg(n) slots are required to complete the activation of the links in £n without generating a

primary conflict. Finally, an additional number of slots are needed to complete the path

corresponding to the link in £n that was activated last, and this is at least La(n). By

maximizing over all nodes we get the expression for B; above.

Thus, Bsas includes some of the effects of the additional SAS constraint. Besides

tightening the bound by capturing the length of the longest path, it also tightens the bound by

considering those nodes of moderate and high degree that cannot be legally activated in the early

9

and/or later slots because of their position in the paths. For example, node 13 in Fig. 2.2 has

deg(13) = 8. Because its earliest appearance in any path is as a receiver in the second link in the

paths between SD pairs 1 and 3 (see Table 2.1), F.(13) = 1, i.e., its first legal activation can occur

no earlier than the second slot. Its latest appearance is as the transmitter in the last link of the path

between SD pair 4; therefore, Lo(1 3) = 0. For the network shown in the figure, the value of Bsas

= Bd'= deg(13) + Fa(13) + La(13) = 9 is, in fact, a tight bound on the sequential schedule length,

i.e., Bsas = A*.

3.2 Heuristics for Scheduling

To further assess the quality of NN solutions, we have also considered two forms of a

"biased-greedy" heuristic similar to that developed by Post et al. in [19]. The NAS heuristic
provides optimal or near-optimal nonsequential-activation schedules (schedules with length equal

to or slightly greater than the NAS bound Bnas, respectively) for most instances of the NAS

problem. The SAS heuristic generally provides sequential schedules with lengths one or two slots
greater than the SAS bound Bsas. In Section 3.3, the performance of these heuristics is evaluated.

Note that both heuristics are deterministic; thus each produces a unique set of link activations for a

specific set of paths.

3.2.1 The NAS Heuristic

For the nonsequential-activation scheduling problem, the heuristic first creates a list of all

the links in the network and assigns to each link a bias equal to the sum of the nodal degrees of the

two nodes on which the link is incident. In this setting, a link corresponds to one unit of traffic

that must traverse one hop. Thus, if four units of traffic must be passed between adjacent nodes i

and j, four parallel links connect the nodes. The list of links is then sorted in descending order

based upon the bias. The algorithm attempts to schedule each link in the first slot by descending

through the list and activating and removing each link from the list that does not share a node with

a previously activated link. When the bottom of the list is reached, the slot number is incremented,

and the process is repeated; the algorithm descends through the remaining list, activating and

removing each lirk that does not share a node with a link that was previously activated in the

present slot The process is repeated until every link has been assigned a slot and the list is empty.

10

3.2.2 The SAS Heuristic

The SAS heuristic, which we introduce in this report, is the first algorithm we know of for

sequential link activation.3 This algorithm is essential!y the same as the NAS heuristic, except that
the list of links for each slot is restricted to those links that are eligible for activation in that slot,

and the basis on which the links are sorted is slightly different. In the first slot, only the first links

(the links emanating from a source) from each path are included in the link list because they are the

only links eligible for activation. The list of links for the second slot includes only the first links

that were not scheduled in the first slot and the second links in paths whose first links were
scheduled in the first slot. In general, the list of links that are eligible for activation in the kth slot

contains no more than Nsd links, where Nsd denotes the number of SD pairs; each link in the list is

less than or equal to the kth link in its path, and all of the links in the path that precede a listed link

have been activated in an earlier slot.

In the SAS heuristic, the bias assigned to each link is slightly altered from that used in the
NAS heuristic to reflect the emphasis on sequential scheduling. Link ij (the jth link in the path

between SD pair i) between nodes t and r is assigned a bias given by

bias. =L(i) -j
biasi = max{deg(t),deg(r)}-+ (

where (p, which was arbitrarily set equal to 10, may be used to shift the priority from activating

nodes of high degree to activating those links furthest from the destination. The eligible links at

each slot are sorted based on their bias and are "greedily" activated as in the NAS heuristic.

3.3 Performance of Scheduling Heuristics

3.3.1 Performance of the NAS Heuristic

The network shown in Fig. 2.1 is the network that was examined in [15] in conjunction

with the routing-to-minimize-congestion problem. As discussed in [15), a total of 52 maximally

node-disjoint paths between 10 SD pairs were found by means of Dijkstra's algorithm. These

paths are listed in Table Al of Appendix A. There are 3,981,312 different sets of 10 single paths

between each of the 10 SD pairs that may be extracted from the 52 paths listed. The NAS heuristic
was applied to each of these path sets; the results are compared with the lower NAS bound Bnas in

Fig. 3.2, which shows the fraction of paths for which schedules of the specified length were

3 In [8), Mukherji presents an algorithm for a similar problem in wire-hne networks.

11

found. The figure shows that route selection greatly impacts the minimum obtainable schedule

length. The minimum value of the bound for the nonsequential-activation schedule length (Bas =

7 slots) was obtained for 858 path sets; the heuristic was able to find a minimum-length schedule

for 481 of these 858 path sets. As noted earlier, it is not known a priori whether a schedule of
length Bnas actually exists; however, our NAS NN model has, in fact, found 7-slot schedules for

all of the path sets with Bnas = 7 (discussed in Section 6.5). At the other extreme, 256 of the path

sets have minimum schedule lengths of 20 slots. The figure also shows that the heuristic

schedules have lengths which are generally near Bas; 97.86% of the heuristically determined

whedules were easily verified to be optimal because they have lengths equal to Bnas. The heuristic

schedules that have lengths greater than Bnas exceed the bound by an average of 1.12 slots.

100

.o_,. Heuristi10-1.

10 -251

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Schedule Length (slots)

Figure 3.2. The fraction of paths for which NAS bounds and schedules
of the specified length were found

The set of 858 path sets that have Bnas - 7 was divided into two disjoint subsets. The fitrst

subset consists of the 377 path sets that the NAS heuristic was unable to schedule in 7 slots. For

future reference, this set is labeled "(7, >7)" (Bnas = 7, heuristic schedule length > 7). The second

set consists of the 481 path sets that the NAS heuristic was able to schedule in 7 slots, and is

labeled "(7, 7)." Partial listings of sets (7, >7) and (7, 7) are given in Tables A5 and A6,
respectively, in Appendix A. Since all of these path sets have Bna = 7, it is natural to wonder

why the heuristic was able to find minimum-length schedules for the sets of paths in the set (7, 7),

but not for those in (7, >7). It was hypothesized that the number of maximum-degree nodes in a

network would give an indication of the degree of difficulty involved in finding a minimum-length

conflict-free schedule. This hypothesis is partially verified by the data shown in Fig. 3.3. In this

12

m I I l 10-3

figure, the 858 path sets with Bnas = 7 were grouped according to the number of maximum-degree

nodes in each of the path sets. The black bars show the percentage of the path sets that have the

number of maximum-degree nodes given by the x axis. For example, 3.5% of the path sets (30 of

the 858 sets) have three degree 7 nodes, and 38.1% have five degree 7 nodes. The light bars show
the percentage of each of the groups that were scheduled in 7 slots by the NAS heuristic. A total of
28 of the 30 path sets (93.3%) with three maximum-degree nodes were heuristically scheduled in 7

slots. The figure shows that as the number of maximum-degree nodes increases, the percentage of
minimum-length schedules found by the NAS heuristic tends to decrease. At the extreme, the
lengths of the schedules generated by the heuristic for each of the four path sets containing eight

maximum-degree nodes were longer than 7 slots. Thus, the number of maximum-degree nodes in

the network provides an approximate measure of the difficulty of finding a minimum-length

schedule by means of the NAS heuristic.

100
g0 The percentage of the path sets with the number

of degree 7 nodes shown on the x axis that
were heuristically scheduled in 7 slots

8O- U The percentage of the 858 path sets with B,,as= 7
that have the number of maximum degree70- nodes shown on the x axis

oI
S60.

30 ,--

I0 ",'-'

so-% %%'% %

Number of Maximum-Degree Nodes (nodal degree -7)
Figure 3.3. The percentage of minimum-length schedules generated by the NAS heuristic for

problem instances with Baa =7, grouped by the number of maximum-degree nodes in the network

13

3.3.2 Performance of the SAS Heuristic

The SAS heuristic was similarly applied to each of the nearly 4 million different path sets,

and the results are shown in Fig. 3.4. The figure shows that the SAS heuristic does not produce

schedules that can easily be verified to be optimal (i.e, schedules whose length matches the bound

Bsas) as frequently as the NAS heuristic; 31.34% of the schedules found by the SAS heuristic had

lengths equal to Bsas, whereas 97.86% of the NAS heuristic schedule lengths matched their

corresponding Bnas value. The SAS heuristic schedules whose length exceeded Bsas were an

average of 1.96 hops longer than the bound. A total of 1862 sets of paths were found that had

Bsas = 8, but the SAS heuristic was able to schedule only eight of these path sets in 8 slots. These

eight path sets are listed in Table A4 in Appendix A. However, the apparently poor performance

of the heuristic results at least partially from the looseness of the bound, Bsas; that is, some
(perhaps many) of the heuristically found schedules with length greater than Bsas may actually be

minimum in length. Simulations of the SAS NN model, which are discussed in detail in Section 7,

have typically yielded sequential-activation schedules with lengths between Bsas and the value of

the heuristic schedule length. This indicates that the disparity between Bsas and the heuristic

schedule lengths is the result of a combination of the loose bound and the inability of the SAS

heuristic to find minimum-length schedules consistently.

10 0

10-1

10-3

L

10--4

1o-5 %

% %

10-6 1.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Schedule Length (slots)
Figure 3.4. The fraction of paths for which SAS bounds and schedules

of the specified length were found

14

4.0 A NEURAL NETWORK MODEL FOR SCHEDULING

For the reader who is not familiar with Hopfield NNs, we strongly recommend that

Appendix A of [151, which provides a discussion of the use of Hopfield NNs for combinatorial-

optimization problems, be read at this point to provide the necessary background material for this

section. The reason that we consider such NNs here is that they have proven to be reasonably
good heuristics for solving combinatorial-optimization problems.

The first step in the formulation of a Hopfield NN model is the definition of neurons that

correspond to binary variables in the system that is being modeled. In this section, we consider a
Hopfield NN in which, for every link in the predetermined paths connecting the Nsd SD pairs, one

neuron is defined for each slot.4 For example, Fig. 4. 1(a) shows a very simple six-node network

with one path between each of two SD pairs, and Fig. 4.1(b) shows a possible configuration

(depending on the implementation of the constraints) of the corresponding 4-slot NN model

designed for the SAS problem. A triple index is used to specify the neurons, e.g., neuron ijk

represents time slot k for the jth link in the path connecting SD pair i. The lower horizontal plane

defined by neurons 211, 231, and 234 contains all of the neurons that represent links in the path

connecting SD pair 2. The parallel upper horizontal plane contains the neurons that represent the
two links in the path connecting SD pair 1. Each of the parallel vertical planes defined by neurons

with the same last digit corresponds to a time slot; e.g., the plane defined by neurons 211, 231,

and 121 corresponds to time slot 1. The connections shown are mutually inhibitory; thus any two

neurons that are directly connected to each other cannot both be "on" (i.e., have a value of 1) in a

valid solution. The solid lines are present in both the NAS and SAS models, whereas the dotted

lines are present in only the SAS model.5

The neurons are analog devices, which are characterized by an input-output relation that has

the sigmoidal form

ik -=g(Uijk) I(+ tanh(U !k}J, (1)

where uijk and Vijk are the input and output voltages, respectively, of neuron ijk, and uo is a

parameter that governs the slope of the nonlinearity. Networks of appropriately interconnected

neurons of this type tend to approach an equilibrium state that, with careful modeling, will

4 Alternate formulations are also possible. Some of the other possibilities are discussed in Section 4.5.
5 Additional connections are needed to help with the satisfaction of system constraints. This figure is meant to
provide a schematic representation of the principles involved in the development of a NN model, and is not meant to
be complete.

15

correspond to a desired solution for the original problem. In our problem, in every valid solution,

each link is scheduled for activation in exactly one slot. Therefore the corresponding desired

equilibrium state of the NN must have exactly one of the Vqik's equal to 1 for every combination of

i and j, and the others equal to 0. For example, in the NN shown in Fig. 4.1(b), exactly one of the

four neurons that represent link 11 must have an output voltage of 1, which means that the link will

be activated in the corresponding slot. Similarly, exactly one of the four neurons representing each

of the other links must also have an output voltage of 1, and all others equal to 0. In practice, since

analog neurons are used, a valid solution will have one neuron per link with an output voltage

value close to 1, rather than exactly equal to 1, while the others will be close to 0. We remark here

that the main advantage of the use of analog neurons is that they permit the embedding of discrete

optimization problems in a continuous solution space, which results in the capability of finding

good solutions much faster than is generally possible in a discrete solution space, as is discussed in

Appendix A of [15].

Sl D2

2 -' Link between SD pair I
I - - op- Link between SD pair 2

22

Communication Network
(a)

114 124

124

Neuron representing a) isin 1

slot of the second link in thede
path between SD pair 6

. 233/21 -y 2
•1-- .7 232

211 221

Figure 4. 1. An example network, (a) shows a six-node communication network, and
(b) shows the corresponding 4-slot NN model

16

Connections, which may be either inhibitory or excitatory, are established between all pairs

of neurons. The strengths of these connections must be chosen carefully because they reflect the

constraints of the optimization problem and are crucial in determining the quality of the solution.

The NN evolves from some initial state to a final state that represents a local (but not necessarily

global) minimum of a Lyapunov energy function, which may be written in terms of connection

weights and bias currents as follows:

Nd N~d L(i) L(m) A A N 1 L() A

Etotal =-X I Y I Y Z Tijk,lmn ij kVLmn.- Y Z gjklijk" (2)
i=1 1=1 j=1 m=1 k=1 n=1 i=1 j=l k=1

In some applications the desired performance measure cannot be put into this form. In such cases,

a Lyapunov energy function that reflects system performance goals (although possibly imprecisely)

is defined. Although minimization of Etotat in such cases does not guarantee minimization of the

desired performance measure, a carefully chosen Lyapunov energy function often provides good

performance.

System evolution starts from an arbitrary initial state, and follows a trajectory along which

Etotal is moi.otonical!y decreasing. In Eq. (2), Tijk,lmn is the strength of the connection between

neurons ijk and Imn (it is positive if the connection is excitatory, and negative if it is inhibitory),

lijk is the bias current applied to neuron ijk, A is the number of slots, and L(i) is the length of the

path between SD pair i in number of hops. The total number of neurons, N, is given by

N,d

N = A L(i).
i=1

Thus an N x N connectivity matrix T can be defined, whose elements are the connection weights

Tijklmn, which specify the strength of the connection between neurons ijk and Imn. Convergence

to a stable state is guaranteed as long as the connections are symmetric (i.e., Tijk,lmn = Timn,ijk)

[10], a condition that is satisfied by our model.

In our problem, the strengths of these connections are chosen to enforce certain constraints,

which can be expressed as

E,(V,V2,V3,...,VN)=O, c= 1,2,3,---,C,

where C is the number of such constraints, and the neurons are renumbered (only in this equation)

from 1 to N for convenience of notation. The specific forms of the constraints associated with our

17

problem are discussed in Section 4.1. By rearranging its terms, we can rewrite the energy function

(Eq. (2)) as follows:

C Nd L(i) A

E1od= bEobj+Y,+-cEc-JY Y X Vijk " (3)
c-1 i=1 j=1 k=1

where Eobj is the objective function that we want to minimize, and which is appropriately

expressed in terms of the Vijk's and Tijklmn's, the Ec's are the constraint-energy terms, the .c's

are Lagrange multipliers that serve to prioritize constraint enforcement, and b is typically a

constant-valued coefficient that weights minimization of the objective function. In the third term of

Eq. (3), ! represents an additional bias current that is applied equally to all neurons to help with

satisfaction of the system constraints. Note that although Etal is monotonically decreasing, Eobj

may take increasing excursions. It is important to note that the NN minimizes (locally) Etotal while

we are interested in minimizing Eobj. If, at equilibrium, the constraints are indeed satisfied it is

hoped that the local minimum of E:otal is also (at least) a local minimum of Eobj.

Typically, in applications of Hopfield-type NNs, the Xc's are constants whose best values

are determined by trial and error. We have found, however, that by allowing the Xc's to vary

dynamically along with the system state as in the classical method of Lagrange multipliers, we

obtain significantly better NN performance. Therefore, this method is used in all of the cases

studied in this report.

The NN is "programmed" by implementing the set of connection weights and bias currents

that correspond to the function Etolal that is to be minimized. An analog hardware implementation

of a Hopfield NN will normally converge to its final state within at most a few RC time constants,

thus providing an extremely rapid solution to a complex optimization problem. In our studies (as

in most studies of this technique) we have simulated the system dynamics in software. Although

such software solutions are extremely time consuming, they verify the soundness of the use of the

Hopfield NN approach for optimization problems of this type and suggest that hardware

implementations may be worthwhile. In fact, hardware implementation may be feasible for sizes

of the problem that exceed by far the ones that can be handled in software.

It is customary and advantageous in certain cases to alter somewhat the approach to the

minimization problem. Instead of trying to minimize the schedule length directly, for example, we

may ask a series of binary questions like: "Is there a schedule of length A that satisfies all

constraints (of conflict-free transmissions, here)?" for A = Ao, Ao + 1, ---, where Ao is set equal

18

to the appropriate lower bound on the schedule length, i.e., Bsas for sequential-, or Bnas for

nonsequential-activation scheduling.

Typically, a number of runs are performed from different initial states of the NN. If a
schedule of A length cannot be found, A is incremented by one and the process is repeated. In this

formulation of the link-activation problem, for each value of A there is no objective function Eobj to

be minimized. Since there is no objective fanction to be minimized directly in the modified,

constraint-based NN model, the energy function given by Eq. (3) may now be rewritten as:

4 Nd L(i) A
Etotal = Y.cEc-IY, I YVijk" (4)

c=1 i=1 j=1 k=1

The goal is simply to determine the existence of a schedule of given length that does not violate a
number of constraints, which are established to prevent transmissions that would result in

collisions, and, in the case of sequential-activation scheduling (SAS), to prevent scheduling the

transmission of a packet before it is received. The achievement or not of the minimum length
depends on how successful the NN is in satisfying these constraints for the different values of A.

4.1 Formulation of the Constraint-Energy Terms

We have studied several versions of the constraints for this problem. In this section we

start by presenting a "basic" version of the set of constraint formulations; then in Section 4.5 the
variations of the basic version that have yielded improved performance are examined.

4.1.1 The Basic Model

Each of the constraints generates a term in Eq. (4) that must be equal to zero when the
constraint is satisfied. This is simply the usual Lagrange multiplier method for constrained

optimization.

Constraint1 - (a) Activate no links that cause primary conflicts:

1NdNdtL(i)L(I) A.

E 2 =- XXX IAyflAimti.. ,kvk =0,
i=1 1=l j=1m=lk=1

where Ay denotes the fh link in the path between SD pair i, and

1, if ij l Im, and links Aj and Aim share 1 or 2 nodes
iAuiNAim=0, if ij =lm, or links Aj and Aim are disjoint

19

The implementation of this constraint provides strictly inhibitory contributions to the

connection weights: Two conflicting neurons (i.e., two neurons that represent adjacent links in a

common slot) mutually exert on each other a negative force that is proportional to the product of

their output voltages.

(b) Limit the number of secondary conflicts:

The effect of secondary conflicts is typically characterized by a threshold Tsec; acceptable

communication quality is achieved as long as the number of interfering signals in a region does not

exceed this threshold. The value of Tsec depends strongly on signaling (i.e., waveform and

modulation) considerations. For example, when only a single narrowband channel is available, no

secondary interference can be tolerated, and the threshold Tsec is equal to 0. At the other extreme,
when an orthogonal signaling scheme is used, secondary conflicts do not cause destructive

interference, so Tsec is equal to -c. The most difficult case to model is that of a quasiorthogonal

CDMA scheme, for which the value of Tsec is chosen so that the packet-error probability does not

exceed a specified value. In this case, we can define Esec-ijk, the secondary-conflict energy
associated with neuron ijk, by means of a simple modification -f constraint 1 (a) as follows:

I dL(1)
Es.ciyk = 1 N E 1()At)2 Alm IViykV, 5 Tsec, Vijk

where

if linkstij and Aiare node disjoint and
IAir *_v2 is within range of tim or rm is within range of tij,

0, otherwise

rij = the receiver node of link A/j, and tij = the transmit node of link A11 .

One way to implement this inequality constraint would be through the use of slack variables

[20]. Such an approach was taken in [211, where an additional neuron was defined for each slack

variable. An alternative approach would be to view Esec as part of the objective function (Eq. (3)),

where

Nod L(i) A
= I Y E ijk

i=1 j=1 k=1

20

Under such a formulation, each secondary conflict would represeat a contribution to a penalty

function; thus the occurrence of secondary conflicts would be discouraged, although not prevented

by any hard cunstraint.

For simplicity, we assume here that an orthogonal signaling scheme is being used (Tsec =

**; thus this constraint is not implemented., since our main objective is to demonstrate the

capability of the NN approach rather than the precise modeling of the interference.

.Co.t.nt2I - Activate each link once and only once:

E2 N..L(i) A V 120.

i1j k=1

This term is zero when exactly one slot is chosen for each link, or, in other words, when,

for every link in the network, exactly one neuron out of the set of neurons that represent different

slots for that link has an output voltage of 1, and the neurons representing all of the other slots

have o i:ut voltages of 0. This constraint can be either excitatory or inhibitory. Loosely

speaking, the effect of this term is excitatory if the majority of links have less than one active

neuron and inhibitory if the majority of links have more than one active neuron.

Constraint 3 - Activate a total of Nx neurons:

w: i L(i) (assuming one unit of traffic is to be delivered between each SD pair) is the

total number of transmissions required to satisfy the communication requirements. This term

vanishes when exactly one slot has been selected tor each link. Like constraint 2, it can be either

excitatory or inhibitory. Although this constraint would appear to be redundant (because

satisfaction of the second constraint would guarantee that it is satisfied as well), its inclusion in the

energy equation is helpful in achieving convergence to valid solutions. The use of such seemingly

redundant constraints is common in Hopfield network models. Satisfaction of constraint 2 alone

(along with a mechanism to guarantee that all neurons take on binary values) would actually suffice

to constrain the number of activations. However, constraint 3 is useful because it imposes a

greater penalty when an incorrect number of neurons in the entire NN are set to 1; this is because it

is a quadratic form centered about Nx, whereas constraint 2 contains Nx quadratic forms each

centered about 1.

21

Constraint - Sequentially activate the links in each path (i.e., link ij must be activated

before link im, for m > j):

N~d L(i)-I L(i) A m-j+k-1

E4 -Y Z Z ZkVm=
i=1 j=l m=j+1 k=1 n=1

This term provides a positive contribution to the energy function whenever two neurons

that represent an out-of-sequence activation of the links in a path have nonzero output voltages. It

turns out that it represents purely inhibitory contributions to the connection weights. In

applications where it is not necessary to maintain the sequential order of link activation, i.e., in the

NAS problem, the E4 term is not included in the energy equation.

4.1.2 Comments on Constraint Satisfaction

Since the neurons are analog devices, whose output voltages take on values in the

continuum between 0 and 1, these constraints cannot be satisfied simultaneously until, and unless,

a state is reached in which all output voltages take on binary values. It is possible for constraints 2

and 3 to be satisfied by a state in which more than Nx neurons are partially active (i.e., have output
values less than 1). This is why, in the neuron input/output reiationship, a relatively steep

nonlinearity is used to force the neuron output voltages towards binary values. Thus, although the

system evolves through the interior of an N-dimensional hypercube, the incorporation of these

constraints into the energy function encourages the system to evolve to "legal states," which are

binary states in which the constraints are, in fact, satisfied. Whether or not convergence to legal

states is achieved, depends on factors such as the kc coefficient values, the initial state of the

system, the slope of the input-output nonlinearity, and the time constants used in the iteration. All

of these factors will be discussed later.

4.2 Determination of Connection Weights and Bias Currents

Substitution of the constraint-energy expressions into Eq. (4) yields:

N~dN~dL(i)L(1) A NdL(i) A 2

Si1 1=1 j=lm=lk=l i=lpilk1 -

+ L NdL(i) A 12 Nd L(i)- L(i) A m-j+.-1 Nd L(i) A
2 -|~ Vjk-IV, +X4, Y, I I v ijkvi-Z Z jvyXX k• (5)

2i=1 j=lk=l i=1 j=1 Pn=j+l k=1 n=1 i=1 j=l k=1

22

To determine the connection weights, we compare Eq. (5) with the generic form given in Eq. (2).

The energy function contains both quadratic and linear terms. The coefficients of the quadratic
terms, which involve products of the form VijkVimn, correspond to connection weights of the form

Tijklmn. Thus the connection weight Tijk.Imn is the sum of all coefficients that multiply the

product VijkVImn in Eq. (5):

=-jkImn AiIAj flALmIA - X28il8jm -- X 48il(l ljm).(j<m).l(n<-{m-j+k-1), (6)

where &ik is the Kronecker delta symbol, and

) 1, if * is true

~10, if * is false

Similarly, the coefficients of the linear terms, which involve the Vijk's one at a time,

correspond to the bias currents. Thus lijk is the sum of the coefficients that multiply Vijk, which

results in

4k = X2 + -3 NZ+I.

4.3 Use of the Method of Lagrange Multipliers to Determine Connection

Weights

Wacholder et al. [22] observed that the energy expression corresponding to each equality

constraint may be used to update the corresponding connection coefficients by allowing the

Lagrange multipliers (LM) Xc to vary dynamically. Thus, each -c, at each iteration, is increased by

an amount proportional to its corresponding constraint energy evaluated in the previous iteration.

That is, at the (n+l)St iteration, we have

IC ' L 1) = Xc (n) +(At)).c Ec (n),

where the time constant (At)), may be a different value for each of the X's. Note that, since Ec >

0, the quantities ,c are monotonically nondecreasing. Typically, the Lagrange multipliers are

assigned initial values of 1.

The primary advantage of this method is that it eliminates the need to perform a trial-and-

error search for the best system parameters, which is normally required for Hopfield network

models. Such a search is especially time consuming in large networks because many (e.g., 100)

runs with different random initial conditions are typically needed to assess the performance

achievable when a particular set of parameters is used. We have used this method with a great deal

23

of success in our studies of routing for the minimization of congestion [15, 161; therefore, it is

used here as well.

4.3.1 Multiple Lagrange Multipliers

Examination of the second constraint energy term E2, which requires that each link be

activated once and only once, suggests that it may be advantageous to define a separate Lagrange

multiplier for the constraint applied to each link. Doing so would increase the LMs associated with

those links that were unsuccessful in activating exactly one neuron. We call this the method of

"multiple Lagrange multipliers" (MLM).

The second constraint formulation may be rewritten as

Nd L(i)
E1=XXe J=o,

i=1 j=l

where each of the terms of the form

e2ij E jk -1 =0

k=l

is an equality constraint specifically for the jth link between SD pair i. Now Lagrange multipliers

are defined to correspond to each of the e2ij's, and they evolve as follows,

k2ij (n + 1) = ,2ij(n) + (A~2a e2iV(n).

4.4 Equations of Motion

An equation characterizing the evolution of the input voltage at each neuron can be obtained

by examining the circuit diagram of the standard Hopfield NN model shown in Fig. 4.2. The

resulting expression is

du..Jt U- uk Nsd L(i) Au,==_u', + Y, Y, TioV + Iit
dt " 1=1 m=l n=I

where t = RC (which may be set equal to 1 without loss of generality) is the time constant of the

RC circuit connected to the neuron. This relationship may be expressed in terms of the energy

function as:

24

du k = _ -Ett I ij_k(7
dt o k(7)

dt a Vijk '

11 i12

V -V V2 -2

Neuron Neuron
+ Resistive Connection with Value 1/1T"01

Amplifier \7 Inverting Amplifier

Figure 4.2. Portion of a Hopfield NN

As the system evolves from an initial state, the energy function decreases monotonically

until equilibrium at a (local) minimum is reached. Since only a local minimum can be guaranteed,

the final state depends on the initial state at which the system evolution is staned; hence the need

for the simulation of a number of runs from different initial states (random seeds). The equations

of motion may be expressed in iterative form as follows:

NdL(I)

1=1 M=1

+ ~ ~ At (= -ikt (A8ujk) (+)X (lA flimi/

AW) .1 LMa +-(A) 4 -6 L(i)E m - + (- jl 1 A- in (rl k

M=j+l n=l = n=max{1,k-j+m+1})

This form is customary and appropriate for computation. A number of issues arise when

these equations are simulated in software. The most apparent is the need to choose the coefficients

in the weight matrix, i.e., the X's and the (At)X's. Also important is the bias current parameter !.

Somewhat more subtle is the impact of the step size At and the nonlinearity parameter uo. The

ability of the state to converge to an admissible solution depends strongly on these parameters. A

con. plete discussion of these and other issues that have arisen in the simulation process is

presented in Sections 5, 6, and 7. At this point, we remark that it is difficult to develop

25

"cookbook" procedures for the choice of specific fixed values of these parameters that will produce
high-quality performance for a wide variety of networks. However, we note that we have obtained

excellent and highly robust results by using the aforementioned method of Lagrange multipliers,
which permits the connection weights to vary dynamically along with the evolution of the system

state.

4.5 Variations of the Basic Scheduling NN Model

4.5.1 The Condensed NAS Model

Although the NAS model attempts to schedule the communication requirements for a set of
multihop paths, this formulation of the problem permits a decomposition that essentially transforms

it to a one-hop scheduling problem similar to that considered in [7]. As such, it is no longer
necessary to associate each lirk activation with a particular path or SD pair. Therefore, the size of
the NN model may be reduced by creating A neurons for each physical link, rather than creating A

neurons for each unit of traffic on each physical link as was done in the basic model. Then

constraint 2 is altered to require that each physical linkp be activated NX(p) times, where NX(p) is

the number of units of traffic that must traverse physical link p. We refer to this as the condensed

NAS model. Denoting the modified formulation of the condensed NAS model with a superscript
c, the resulting constraint may be expressed as

K-I Vxx - Nx (p)j = 0,

where NpI is the number of physical links in the network.' Differentiation of E with respect to

pk, as suggested by Eq. (7), yields the corresponding equation of motion term:

N(A

FWPk _ 1 VP, "

Note that now the neurons are double indexed (a triple index was needed in the basic model) so

that neuron pk represents the ptl physical link at the kth time slot. Although the other constraints
remain virtually unchanged, the modified structure of the condensed NAS NN model requires that

6 This expression may be easily converted to the MLM format by applying an approach similar to that used in
Section 4.3.1. That is, for each physical link p, a Lagrange multiplier is defined to correspond to an equality
constraint that requires link p to be activated exactly Nx(p) times.

26

each of the constraint-energy terms be rewritten to conform to the new doubly indexed neuron

notation. This gives the following modified total energy equation:

= 1 NP NOA X NP{ A P)

2p=lq-i k=1 2 =)=
q~p

+ 2L JV, A 2 N, 1 A

YVk- N. -J X YV~
2 ,p=l k=1 p=I k-I

where we now have

I, if physical links AP and Aq share I or 2 nodes

[ApfAqi = 0, if physical links Ap and Aq are node disjoint

Because this is strictly a NAS model, the sequentiality constraint E4 has been omitted.

The communication requirements of Table 2.1 represent a typical example considered in

this report. Scheduling these requirements with the basic NAS model requires a NN consisting of

(41 required transmissions x 8 slots =) 328 neurons. The use of the condensed NAS model results

in a reduction in the number of neurons to (30 physical links x 8 slots =) 240. Since the number of

computations required at each iteration is approximately proportional to the square of the number of

neurons, this reduction in the number of neurons markedly reduces the NN complexity.

Furthermore, extensive simulation results, which are discussed in Section 6, have shown that the

condensed NAS model consistently delivers better performance than the basic model.

4.5.2 The Reduced SAS Model

The condensing process just discussed for the NAS model cannot be applied to the SAS

model. Under the SAS operation, it is necessary to keep track of the SD pair for which each link is

activated, so that the sequential order of link activations over every SD pair can be maintained.

However, the number of neurons can be reduced by eliminating those neurons from consideration

whose activation would not be consistent with the sequential-activation constraint. For example,

the second link of a path cannot be activated in the first slot of the schedule, etc. We refer to the

resulting model as the reduced SAS model.

When the sequential-activation constraint is enforced, the set of slots in which link ij may

be legally activated is a subset of the set of A slots that form the schedule. If, for example, the path

27

between SD pair x has length L(x) = 5, and the sequential schedule length is A = 6, the first link of

the path, link xl, may be legally activated only in one of the first two slots; activation in a later slot

must result in either a primary conflict, a sequence conflict, or both, or the failure to schedule the

activation of every link. Similarly, the second link in path x, link x2, may be legally activated only
in one of slots 2 or 3, and link xj may be legally activated only in one of slotsj orj +1. In general,

link ij may be legally activated only in one of slots j through j + Xi, where Xi = A - L(i).

Therefore, the neurons that represent illegal slots (i.e., neurons ijk, k < j or k > j + Xi) may be

eliminated without reducing the admissible 7 solution space. The elimination of these neurons,

besides reducing the complexity of the NN, also removes a significant number of potential local

minima that may trap the NN in an inadmissible solution.

Thus, in the reduced SAS model, only Xi + 1 neurons are created for each link in the path
between SD pair i, rather than A. The constraint formulations of the basic model are virtually

unchanged; only the indices of the summations over the number of slots must be changed to reflect

the absence of neurons that correspond to illegal slots. (Alternatively, the removed neurons may
be considered to have output voltage values of zero, in which case the indices of the basic model

equations need not be altered.)

Figure 4.3 shows the reduced SAS model for the network of Fig. 4.1 (a). A comparison of

the model in Fig. 4.3 with that shown in Fig. 4.1(b) illustrates that, even in this very simple
problem, a significant reduction in both the number of neurons, and the number of connections, is

obtained through the use of the reduced SAS model. The solid li&,es in Fig. 4.3 represent the
neuron interconnections that enforce the first two constraints. Those that are parallel to the y axis

enforce the first constraint, which prohibits primary conflicts. The interconnections that are

parallel to the time axis enforce the second constraint (activate each link exactly once). The dashed

lines represent the interconnections that enforce the sequentiality constraint. The interconnections

between every pair of neurons that enforce the third constraint (activate a total of Nx neurons) are

not shown.

The minimum length of a sequential-activation schedule that satisfies the communication

requirements of Fig. 4.1(a) is 4 slots. Table 4.1 lists one such schedule. In the table, entries are

shown only for the slots that are represented by a neuron in Fig. 4.3. The blank cells represent the

slots in which the link can never be activated in an admissible sequential-activation schedule.

Thus, the table also aids in understanding the structure of the reduced SAS NN model. Since each

of the cells in the table corresponds to a neuron, the cells are addressed by a triple index in the

7 An admissible solution or schedule is one that satisfies all of the constraints.

28

same manner as the neurons; i.e., cell ij,k represents slot k of the th link in the path between SD

pair i. A cell entry of"X" denotes a link activation, "o" denotes an open slot (i.e., the link may be

activated with out conflict), "b" denotes a blocked slot in which activation will result in a primary

conflict, and "i" denotes an ineligible slot (i.e., a slot in which activation of the link must cause a

sequence conflict). For example, the "b" entry in cell 1,2,4 indicates that activation of link 1,2 (the

second link in the path connecting SD pair 1) is blocked in the fourth slot by the scheduled

activation of link 2,3 in this slot. Therefore, activation of link 1,2 in the fourth slot would cause a

primary conflict. A close examination of the table reveals that link 1,1 may be activated in slot 3

without causing a primary conflict. However, because link 1,2 is blocked in slot 4, there is no

way that a unit of traffic received in slot 3 can be relayed by link 1,2 in this four-slot cycle; i.e., as

a result of the blockage of link 1,2 in slot 4, activation of link 1,1 in slot 3 must result in a

sequence conflict. Therefore, we declare link 1,1 ineligible for activation in slot 3, and enter an "i"

in cell 1,1,3.

124

113 1O w '. i i1
SNeuron representingi

the second slot of the 234
second link in the %
path between SD
pair 1.. 223 233

/ 12 222

21
Figure 4.3. The reduced SAS model for the network shown in Fig. 4.1 (a)

Table 4.1. An optimal schedule for the network of Fig. 4.1 (a)
(X = link activation, o = open for activation, b = link blockage,

i = ineligible for activation owing to the blocka of an ad acent link)
Indices Slot I

Path Link (SD, link) 1 2 3 4
1 (1->2) 1, Fb i

(2->6) 1, - b b
(4->5) 2,1 o-

2 (5->6) 2,2 b X
>3) 2,3 b

29

4.5.3 The Adjustable-Length Model

Our approach with the basic, the condensed NAS, and the reduced SAS NN models, like

the approach in [71, has been to attempt to solve the problem of determining the minimum-length

admissible schedule that satisfies a gi'ven set of end-to-end communication requirements by

repeatedly posing the iklnaay question "Can a schedule be found that satisfies the given end-to-end

demand in A slots?" for different values of A. Starting with A equal to a known lower bound on

the schedule length, the question is repeated as A is incremented until an admissible schedule is

found. Since the NN model only guarantees convergence to local minima of the energy function,

the failure of any NN simulation to find a A-slot admissible schedule does not preclude the

existence of such a schedule. Therefore multiple NN runs from different initial conditions must be

run for a value of A that is too small before it may be concluded with any degree of confidence that

a larger value is required. In the NAS problem a schedule can usually be found for the first value

of A because the NAS bound Bnas is tight for many networks and communication requirements

(the bound is tight for all the topologies we have examined). However, in the SAS problem

multiple runs for several values of A are usually required because the SAS bound Bsas is generally

not tight. These considerations, coupled with the frustration of multiple inadmissible solutions, led

to the development of' te "adjustable-length" model.

The adjustable-length model attempts to solve the scheduling problem without resorting to

the binary-question approach. Ideally, every run of the adjustable-length NN model will deliver a

conflict-free schedule of short, but not necessarily optimum, length. This is achieved by

implementing the basic model (or the condensed NAS, or the reduced SAS variants) with an

obviously excessive number of slots (e.g., use A = 1.5 Bd,l a known upper bound on the

minimum schedule length for NAS [6]), and penalizing activations that occur in later slots by

means of an additional energy equation term, w.tich we shall denote E5. Thus, link activations are

encouraged in the early slots, and unused slots are discarded to yield a nearly minimum, if not

minimum, length admissible schedule.

For problem instances in which the bound Bs (i.e., Bnas or Bsas, whichever is appropriate

for the problem instance) is tight, the additional energy equation term can be simply formulated as

an equality constraint:

NsdL(i) A

E5 = XXW(k)jk =o, (8)
i=1 j=l k=1

The bound Bd is the maximum nodal degree in the network, as discussed in Section 3.1.1.

30

where W(k) can be defined as

W(k).. (k-B,)', k> B,
J 0, otherwise

or as some other similar function of k, the slot number. With this formulation, the penalty for

activating links in slot k increases as k increases past Bs. However, as discussed in Section 3.1, it

is generally not known a priori whether the bound is tight, and there are problem instances in

which E5 > 0 for all solutions that satisfy the first four constraints. Thus, in general, Eq. (8)

should be written E5 > 0.

Despite the fact that Eq. (8) should really be an inequality, we have found it advantageous

to implement it as an equality constraint in our simulation runs. Doing so permits the use of a

dynamically-varying Lagrange multiplier A.5, which continues to grow as long as the equality

constraint is not satisfied. To prevent excessive growth of X when the bound Bs is not tight, a
small value (relative to the other LM time constant values) is used for the time constant (At)x5.
This causes the growth of X to be slower than that of the other LMs, so that violation of the

constraint is, in essence, discouraged rather than prohibited. The resulting equation of motion
term, which is found by applying Eq. (7), is simply

-aE5 -W(k).

avijk

4.5.4 Gaussian Simulated Annealing

Simulated annealing (SA) [23, 24, 25] is a probabilistic minimization algorithm that

facilitates the escape from local minima so that the chances of finding the global minimum are

enhanced. Under this technique, the energy function normally follows a gradient descent;

however, random perturbations are applied to permit occasional transitions to states with higher

energy. If these perturbations are large enough, 1- is possible to escape the local minimum, thereby

permitting the search by gradient descent to resume in a new location in the search space.

In [15], we used a specialized form of SA, called Gaussian simulated annealing (GSA),

which incorporates the use of a modified form of the "Gaussian machine" developed by Akiyana

et al. [26, 27] in conjunction with the use of the method of Lagrange multipliers in some of our

NN simulations. With GSA, the random perturbations are applied in the form of additive

Gaussian noise (AGN), where the variance of the Gaussian noise diminishes with time.

31

The Gaussian Machine of [26, 27] used constant valued connection weights and combined

a form of mean field annealing (MFA) [28] (an overview of MFA is given in Appendix A of [151)

with AGN. However, we have found that the combined use of the methods of Lagrange

multipliers and AGN generally provides better results than those obtained through the use of MFA

with AGN. Efforts to combine the use of MFA with the method of Lagrange multipliers led to the

conclusion that there is no synergistic relationship between the two methods [15]. Therefore, our

form of GSA employs the method of LM with AGN and an unchanging nonlinear neuron

input/output voltage relationship.

The use of GSA has no direct effect on the NN energy formulation. Therefore, it may be

used in conjunction with any of the NN models or their variants. The use of GSA is reflected in

the equations of motion only by the additive noise term as follows:

Uijk = Uijk + T1,

where uijk is the input voltage in the absence of noise. This may also be written as

N~d L(l) A

U'k(t + At) = ujk(t) -(At) uik(t) - Y Y, Y Tijk.lmnVlm -!ikJ+ T",
1=1 m=ln=l

where uijk is the input voltage in the presence of AGN, and the noise term 1 has a zero-mean

Gaussian distribution with variance a2 . The variance is decreased according to a "cooling"

schedule given by

where k = f]r, To is a parameter that controls the initial value (temperature) of the variance, and

'T is the annealing time constant which controls the rate of cooling. After a specified number of

iterations, Gend, TI is set to zero so that noise is no longer added to the system. The use of this

form of GSA has yielded improved performance in several of the scheduling NN models, as

discussed in Sections 6 and 7.

5.0 SIMULATION ISSUES

Extensive simulation results have demonstrated the capability of our NN formulation to

generate optimum or near-optimum schedules. Several variants of the NN model, which have

used different versions of the constraints and/or Gaussian simulated annealing, have been

32

simulated. The results of these simulations are presented following a discussion of simulation

methodologies and considerations.

The NN model was simulated using a program written in C++, which was run on Sun-4

workstations. The program reads a file that lists the nodes traversed in each of the predefined

paths. This information is used to build the scheduling NN model, i.e., the neurons are defined

and indexed such that neuron ijk represents slot k of the jth link in the path between SD pair i (in

the condensed NAS model, the neurons are double indexed so that neuron pk represents slot k of

physical link p), the weight matrix T is created according to Eq. (6), and the bias currents are de-

fined. The system parameters used in determining the coefficients in T and the bias currents are

contained in a separate file to facilitate their modification as necessary. This process of "building"

the NN is completely automated; the operator is only required to provide the file that enumerates

the paths and, if desired, edit the parameter file to adjust the system parameters. Thus, different

problem instances or networks may be quickly and easily analyzed.

The initial input voltage to each neuron ijk (,pk for the condensed NAS model) is set so that

A A

XVijk(0) = 1 E V,(O) = N.(p) for the condensed NASmodel,
k=l

where Vijk(O) denotes the initial output voltage of neuron ijk. For the basic model, the output

voltage is equal to the inverse of the number of slots A; for the reduced SAS model the output

voltage is equal to (Xi + 1)- 1 (recall that in the reduced SAS model, Xi + 1 neurons are created to

represent the slots in which a link in the path between SD pair i may be legally activated, and that

Xi = A - L(i)), and for the condensed NAS model the output voltage is equal to NX(p) / A (since

physical link p should be activated in Nx(p) slots). To obtain an initial output voltage of Vijk(O) =

Y-1, we solve Eq. (1) for uijk, and find that the initial neuron input voltage must be set to

Uijk(O) = uo tanh-l1(2 1).

A small perturbation is then added to the initial input voltage of each neuron; addition of this

perturbation avoids a totally symmetric initial state, which is an undesirable condition [10]. The

perturbation quantity is randomly drawn from a uniform distribution on [-0. 1 uo, 0. 1 uo], and is

different for each neuron.

The equations of motion are iterated, allowing the NN to "relax" to a minimal energy state.

It is important to note that system evolution is deterministic. The only randomness in the model is

33

associated with the choice of the initial state.9 To obtain different initial states for a given problem

instance, different seeds are passed to a random number generator so that a unique sequence of

random deviates is used to perturb the initial input voltages in each simulation. A particular initial

condition can be reproduced by, once again, passing the random number generator the seed that

produced the original state. Since the system evolution follows a trajectory of monotonically

nonincreasing energy, the initial condition determines which portion of the solution space is

actually searched, and thus which final state is reached.

5.1 A Binary Interpretation of the Analog State

A special feature of our problem is that each link must be activated in exactly one slot; 10

i.e., exactly one of neurons ijk, k = 1, ..., A (k = j ..., j + Xi for the reduced SAS model), must

be activated. This property can be exploited by declaring the neuron with the largest output voltage

in the set of neurons representing a link to be "on," regardless of its actual output voltage. Ties

(i.e., equal output voltages) can be broken arbitrarily, e.g., by choosing the lowest-numbered

neuron in such a set. Thus, at any time in the NN evolution, a tentative schedule may be obtained

from the analog system state by picking a binary state in this manner. We refer to this state as the

"instantaneous" state of the system. Tracking the instantaneous state permits the observation of the

schedule as it evolves over time and seeks to eliminate scheduling conflicts. (The actual system

evolution proceeds in the interior of the analog solution space, however. This mapping from an

analog state to a binary one at each step of the iteration is simply for the purpose of assigning a

binary interpretation to the state before termination has been reached.)

This instantaneous state interpretation may be easily applied to the condensed NAS model

by simply declaring the Nx(p) neurons with the largest output voltages in the set of neurons

representing physical link p to be "on."

The instantaneous state interpretation of the analog state guarantees that constraints 2

(activate each link once and only once) and 3 (activate exactly Nx neurons) are satisfied. However,

it also admits primary and sequence conflicts (violations of constraints 1 and 4, respectively). By

assuming that those neurons that have been declared to be "on" have output voltages of 1, and all

other neurons have output voltages of 0, we can count the number of primary and sequence

conflicts by calculating the "binary-instantaneous" first and fourth constraint energies, respectively,

9 Except for the case of using simulated annealing in conjunction with our NN model, as discussed in Section
4.5.4, which does result in nondeterministic system evolution.
10 Except in the condensed NAS model where each physical link p must be activated in exactly N,(p) slots. This

exception is covered in the next paragraph.

34

that result from the instantaneous state. Thus, the binary-instantneous first constraint energ, Ehl
gives the number of primary conflicts, and the binary-instantaneous four % constraint energy Eh4

gives the number of sequence conflicts.

5.2 Termination Criteria

The iteration is terminated whenever one of the following four criteria is satisfied:

(1) an admissible schedule has been discovered; i.e., when the instantaneous state is free

of scheduling conflicts, or
(2) a convergence has occurred; i.e., when all neuron output voltages are within some
specified value c (we have used e = 0.01 exclusively) of the output voltage limits 0 and 1,11

or

(3) a "stalemate" has been reached, i.e., when the instantaneous state has remained

unchanged for a specified number Nc of iterations, or

(4) a "time-out" is reached, i.e., when the NN has failed to find a legal schedule or

otherwise terminate within a specified number Ni-m= of iterations.

When the instantaneous state is free of scheduling conflicts, the corresponding binary-

instantaneous constraint energy terms are zero. In particular, for the case of nonsequential-

activation scheduling we have Ehl = 0; for the case of sequential-activation scheduling, EM = Ehl

= 0. Since all of the constraints are essentially satisfied, continued iteration only z.rves to drive the

output voltages of those neurons that are declared to be "on" (on the basis of the instantaneous state
interpretation) nearer to their assur.ied output voltage value -L 1, and force the output voltages of
the remaining neurons toward 0. Thus, a conflict-free schet.ule of length A has been found and

continued iteration can yield no improvements or new information.

In runs that are terminated because of convergence, stalemate, or time-out, the NN has

failed to find a conflict-free schedule of length A. Termination due to convergence or stalemate

generally indicates that the system is trapped in a high-energy local minimum of the energy

function, and further iteration (without the aid of simulated annealing or some other mechanism to
escape local minima) generally is futile. Termination as a result of a time-out may also indicate that

the system is trapped in a high-energy loc%! kninimum of the energy function, or, more likely, that

the system is waffling between two (or more) different inadmissible states. For example, an
insufficient number of activations may provide sufficient excitation to activate neuron ijk, resulting

II Such convergence is always to an inifeasible schedule; a feasible schedule would have been recognized prior to
convergence by examining the instantaneous state.

35

in a primary conflict. This constraint violation in turn provides sufficient inhibition to deactivate
neuron ijk, returning the system to the original condition of an insufficient number of activations.

5.3 Two Methods of Evaluating NN Performance

"Wee have taken two different approaches, the Monte-Carlo app, oach, and the multiple-
instance approach, in evaluating the performance of the NN models. With the Monte-Carlo
approach, for a particular problem instance, a given value of A, and set of parameter values, the
NN is run from a number of different initial states (typically 100). The fraction of runs that yield
admissible schedules in the series of simulations is then used as a measure of the NN model's

performance.

With the multiple-instance approach, a problem instance is simulated from different initial
states until an admissible schedule is found. If an admissible schedule is not found within a
specified number of different initial states Ns-m=, A is incremented and the process is repeated.
By applying this approach to a sequence of problem instances with similar characteristics, e.g., a
sequence of problem instances that all have the same lower bound on schedule length, the
performance of the NN model may be characterized by the average schedul; length, and the
average number of runs required to find a conflict-free schedule.

As discussed in Section 3.3, the 858 path sets that have Bnas = 7 were divided into two

communication specification sets, set (7, >7) and set (7, 7). Set (7, >7) consists of the 377 path
sets that the NAS heuristic was unable to schedule in 7 slots, and set (7, 7) consists of the 481 path
sets that the NAS heuristic was able to schedule in 7 slots. In our simulation studies using the
multiple-instance approach, we have compared these two sets in terms of the ability of the NN to
generate minimum-length schedules.

5.4 A Modificat;on that has Improved cimulation Results

We observed in our studies of a r,.i:1g NN rrodel [151 that an insufficient number of
neurons were typically activated, a puolem that '., mitigated by increasing the bias currents.

Hopfield and Tank [10] observei the same behavior in th-ir studies of the TSP, as is discussed in
Appendix A of [15]. In our studies of the scheduling NN mxlel, insufficient neuron activation has
not been a problem. Nonetheless, we have found that adjusting the neutral positions of the
amplifiers with additional bias currents has helped in satisfying the system constraints. We have
incorporated the additional bias current into constraint 3 (see Section 4.1), which may now be

expressed as follows:

36

A 2

F == -O, 0.
i1j=lk=l

The typical value of 03 that was used in the routing problem was J3 = 1.5, which provided the
additional excitation required to activate the correct number of neurons. This is also the value of I3
that was used by Hopfield and Tank [10] in their solution of the TSP. In the scheduling NN

model, where the underactivation problem is minimal, we have found that setting 3 = 0.61

generally provides the best results. The resultant expression for bias currents, which should be

compared to that given in Section 4.2, is:

4,.k = 2 + ,30N +1.

Methods to update the value of 0 dynamically, in conjunction with either the NAS or the SAS

model, are discussed in Sections 6.2.3 and 6.4.1.

6.0 NAS SIMULATION RESULTS

In this section, we present the results of simulation of the somewhat-easier NAS problem

in which the sequential-activation requirement is removed. In this case, the goal is to schedule

each link the correct number of times in each activation cycle, without regard to the order in which

the links of any path are activated. This approach supports the same total traffic (in terms of the
number of activations of each link per cycle) as the sequential-activation model, but may result in

greater end-to-end packet delay because several cycles may be needed to transport a packet from

source to destination. Actually, in most cases, throughput (measured in terms of packets per slot)

is greater using nonsequential-activation scheduling because removal of the sequentiality constraint

often permits satisfaction of communication requirements in fewer slots.

In sections 6.1 - 6.3, the performance of the condensed NAS NN model is evaluated on the
basis of Monte-Carlo simulations of three problem instances. The model that was found to give
the best performance is the condensed NAS model with j3 = 0.61. The sensitivity of this model to

parameter variations is also evaluated. In Section 6.4, heuristic improvements for the NN model

are developed, and their effects are evaluated by means of multiple-instance simulations in Section
6.5. The results of simulations of the basic and the adjustable-length NAS NN models are
presented in Section 6.6. Although, in general, the performance of these models is inferior to that

of the condensed model with J3 = 0.61, each of the models has certain attributes that make its

evaluation worthwhile.

37

6.1 The Condensed NAS Model Using the Monte-Carlo Approach

We have studied in detail the scheduling of the links corresponding to the communication

requirements shown in Table 2.1 and Fig. 2.2 using different variants of the NAS model and the

Monte-Carlo approach. As can be seen in Fig. 2.2, the maximum nodal degree in the network is 8

at node 13. Therefore, a lower bound on the nonsequential-activation schedule length for this

problem is 8 slots. In fact, this is the minimum schedule length as verified by the oxistence of a

number of admissible 8-slot schedules, which have been found by the NAS NN model.

We first considered the condensed NAS model with 03 = 1 and MLM; starting from 100

different initial states, an optimal schedule (conflict-free b-slot schedule) was found in 84 runs.

When GSA was used in conjunction with this model, simulations from the same 100 different

states found 89 optimal schedules. However, the best results were obtained using the condensed

NAS model with 13 = 0.61 and MLM. Optimal solutions were found using this value of 13, both

with and without GSA, in all of the simulations from 100 initial states. Out of the 200 optimal

schedules found in these two simulations, no two were the same. This verifies that the NN is, in

fact, searching different portions of the solution space and successfully converging to local minima

of he energy function that correspond to optimal schedules. Despite the fact that both simulations

used the same initial states, the application of GSA caused a completely different set of optimal

schedules to be found. Thus, in this case, AGN alters the search trajectory without compromising

(nor enhancing) the final solution quality. With GSA the average number of iterations required to

find a schedule was 1075.7; in the absence of simulated annealing an average of 1112.7 iterations

were required. The distribution of the number of iterations required to find a schedule is shown in

Fig. 6.1. Both the minimum (255 iterations) and the maximum (8815 iterations) number of

iterations required to find a schedule occurred when using GSA. The minimum and maximum

simulation durations without GSA were 420 and 4375 iterations, respectively.

The parameter values used in the simulations of the condensed NAS models are shown in

Table 6.1. In the table, kc(O) denotes the initial value of all of the Lagrange multipliers kc's (this

includes the initial value of each of the MLM k. a's), and the parameter is the limiting value of the

neuron input voltages, i.e., -- < Upk C .12 The GSA parameters apply only to the runs that used

simulated annealing.

12 Our studies have shown that it is helpful to place limits on the neuron input voltages (which otherwise could
range from -- to o); such limits help to prevent the neurons from being irrevocably locked into an "on" or "off"
state.

38

0.6 II0 GSA
0.5 SA

0.0
<500 500-. 1000- 1500- 2000- 2500- 3000- 3500- >4000

99.49 9904925939940

Iterations Required to Find an Optimal Schedule
Figure 6.1. Distribution of the duration of simulations using the

condensed NAS NN model with 13 =0.61

Table 6.1. Condensed NAS NN parameters
I()I(AOt) (A)X2I (AI)x31 At ' I 1 -axN A MLM To TIed

L1. 0 0.02 0.1 0.1 10 -4 10 1.0, 0.61 2x104 104 0.75 8 yes 0).01 50 10

6.2 Parameter Sensitivity

An important issue in measuring the performance of a NN model is its parameter

sensitivity. If good solutions are obtained using a wide range of parameter values, the time

required to determine appropriate parameter values by multiple trial-and-error simulations is greatly

reduced. It is also likely that, once an appropriate set of parameter values has been determined,

this set of parameters will provide good NN performance over a broad class of problem instances.

Analysis of parameter sensitivity also indicates which of the parameters cause the most variance in

NN performance. Knowledge of these parameters gives a starting point for adjusting the

parameter values for different communication requirements.

The condensed NAS model with 13 = 0.61 and the parameter values listed in Table 6.1

provided extremely good results when scheduling the requirements of Table 2.1. The sensitivity

of this model to variations in the values of the bias parameters I and 13, and the third constraint LM

time constant (At) .3 has been evaluated through simulations. It was found that the model is

relatively insensitive to variations in any of these parameters. The most critical parameter is 13,
which, if set too small, prevents the discovery of admissible schedules by causing an oscillatory

NN state. The results of these parameter sensitivity simulations are discussed next.

39

6.2.1 Bias Sensitivity

A series of Monte-Carlo simulations of the condensed NAS model with j3 = 1.0 was

performed using different values for the additional bias I in each of the sets of runs from 100
different initial states. The communication requirements were given by Table 2.1 and Fig. 2.2.

The parameter values of Table 6.1, with the exception of the bias values, were used in conjunction

with GSA. The GSA parameter values are also listed in Table 6.1. The results of these

simulations are shown in Fig. 6.2. The figure shows that over a bias range of 20, [10, -10], the

fraction of optimal schedules varied from a low of 89% to as high as 93%. The primary

conclusions that may be drawn from these simulations is that the NN model is relatively insensitive

to the bias value.

9

490

E

1 85

80
10.0 1.0 0.0 -1.0 -2.0 -4.0 -5.0 -6.0 -7.0 -8.0 -10.0

Bias I
Figure 6.2. Success rate of the condensed NAS model using different values of I

6.2.2 LM Time Constant Sensitivity

A similar series of Monte-Carlo simulations of the condensed NAS model with [= 1.0 and

MLM, both with and without GSA, were run using different values for the Lagrange multiplier X3

time constant (At)43 which corresponds to constraint 3. These simulations used the parameter

values listed in Table 6.2 in efforts to schedule the communication requirements of Table 2. 1. This

series of runs was motivated by the remarkable performance of a distributed implementation of the

link-neuron NN model for routing to minimize congestion [151. In that model, the constraint that

corresponds to X3 in the NAS model was "turned off." The resulting performance rivaled that

obtained with any of the link-neuron routing models. If the same results are possible with the

condensed NAS model, improved performance should be obtained as the third constraint time

40

constant (At))x3 is decreased. However, as shown in Fig. 6.3, this is not the case. The figure
shows the percentage of optimal solutions obtained using different values of (At)k.3, both with and
without GSA. In the runs with (At). 3 = 0, the corresponding LM X3 was also set to zero so that

the third constraint made no contribution io the energy Etotal, nor to the equations of motion.
Clearly, when using GSA, better performance is obtained when the system evolution is partially

guided by the third constraint. However, the best performance was obtained in the absence of both
GSA and the effects of the third constraint.

Table 6.2. Condensed NAS NN parameters for (At)A.3 analysis

X.c(0) (At)XI (A 2(At) At I I 10 Ni-maxI Nc I IMUM To I TI Ge
1 0.02 0.01 vary 10-4 0 1.0 2x14 104 0.75 8 yes 3.01150 104

SGSA--) no GSA

-90

.85.

75

0.1 0.05 0.025 0.01 0.0 0.05 0.025 0.01 0.0 0.0
(At)) 3

Figure 6.3. NAS NN success rate versus (At)X3

Figure 6.3 also shows the benefit obtained by limiting the neuron input voltage to the
interval [-c,]. As indicated by the shading of the bars in the figure, in all but one of the

simulations the input voltage to all of the neurons was restricted to -0.75:< up < 0.75. The lighter
shaded bar shows the results of a Monte-Carlo simulation in which the neuron input voltage values
were not limited, but was otherwise a repeat of the Monte-Carlo simulation that yielded the best
results, i.e., the simulation of the model that uses neither the third constraint, nor GSA. Clearly,
limiting the input voltage results in a significantly increased number of optimal schedules. Limiting
the input voltage allows the NN to respond more easily to forces exerted by the constraints by
keeping the individual neuron states near the steep portion of the input/output nonlinearity.

41

6.2.3 Sensitivity to P

To determine the sensitivity of the NN model to the value of 13, a series of simulations

using MLM, GSA, the parameters of Table 6.1, and different 13 values were run in efforts to

schedule the requirements of Table 2.1 without the sequentiality requirement. The nine different
values of 13 that were used are shown in Fig. 6.4. For each value of 13, the NN model was run

from 50 different initial states. The same 50 initial states were used for each value of 13.

We also tried varying 13 as a function of the first constraint energy El. That is, we tried 13=
f(E 1), where

f(E1=[O'--' ' <- r
0.6, E> "r

N Eq Nx (9)

0.6Nx' Nx

Thus, the minimum value of 3 as a function of El is 0.6, and 13 approaches 1.0 as E1 approaches

zero. The problem-specific parameter rt sets the value of El at which 13 begins its approach

towards 1.0. In our current example, where Nx = 41, we set rt = 0.24 so that as the value of E1

drops below 10, 13 starts its monotonic growth towards 1.0. This approach was motivated by the

fact that, if the iteration is allowed to continue after discovering a conflict-free instantaneous state,

or if the NN fails to find an admissible schedule relatively early in the iteration, the LM X3 will

eventually enforce the third constraint. With a nonunit value of 13, a literal enforcement of the third

constraint E3 ' must result in ultimate convergence to an inadmissible solution (even after an optimal

schedule has been found) because the wrong number of neurons (13Nx # Nx) must be activated.

By allowing 13 to go to one as E1 goes to zero, it was hoped that the benefit of the use of a nonunit

value of 13 could be obtained without the associated degeneracies.

The results of these simulations are presented in Figs. 6.4 and 6.5. Figure 6.4 shows the

probability of finding an optimal schedule using the different values of 13. The figure indicates that

the use of any value of 13 in the range [0.488, 0.854] yields 100% optimal solutions to this

problem. When values less than or equal to 0.244 were used, no admissible schedules were

found. In fact, these small values resulted in an oscillatory state in which all neurons alternately

had output voltages of 1.0 and then 0.0. The use of 13 =f(EI) yielded 90% optimal schedules,

which was less than any of the runs with 0.366 .5 constant 13 _ 1.0. A different, and more

successful, approach to the use of a nonconstant value of P3 is discussed in Section 6.4.1.

42

.1.00

0.90

120.80
. 0.70

0.60

z0.50
&OD

a.,0.40

0.30

*~0.20

S0.10

0.00
[0.122 0.244 0.366 0.488 0.610 0.732 0.854 1.0 1.122 XKE)

O3N, 5 10 15 20 25 30 35 41 46 f)
P and rwx

Figure 6.4. Probability of obtaining an optimal schedule versus [3
(f(E1) is given by Eq. (9))

Fig. 6.5 examines performance sensitivity with respect to 03 from a different viewpoint. In

this figure, the average number of iterations required to terminate a run are plotted against the

different values of [3. The dark bars give the expected number of iterations for termination due to

any of the termination criteria including time-out (E (number of iterations)). The light bars give the

expected number of iterations to find an admissible schedule given that an admissible schedule is
found (E(number of iterations I optimal)). Because most of the runs that failed to find an

admissible schedule were terminated as a result of a time-out at Ni-ma = 20,000 iterations, we

conclude that E(number of iterations) > E(number of iterations I optimal), with equality only if
100% admissible solutions are found. The results for the runs with 3 = 0.122 and 3 = 0.244 are
not shown because no admissible schedules were found in those runs, which all timed-out at

Ni-ma= = 20,000 iterations.

Figure 6.5 shows that the fewest number of iterations are required when 13=0.61 is used.

This value yields 3Nx = 25, which, perhaps coincidentally, is near to the number of physical links
in the network (30). This raises a question as to whether 3 = 0.61 is a universally good value, or

merely a good value for this problem instance. Perhaps 03 should be proportional to the ratio of the

number of physical links NpI to the number of required transmissions Nx, or it may be necessary

to independently determine a good value of 13 by trial and error for every problem instance.

43

4500
4 E(iterations)
E3 E(iterations I optimal)

3500

3000
E~ J

100 U%

0O o II

0

P 0.366 0.488 0.610 0.732 0.854 1.0 1.122 AE)
3N. 15 20 25 30 35 41 46 J3)

0and [P,,

Figure 6.5. Expected number of iterations required to find an 8-slot schedule as a function of 13
(1(E1) is given by Eq. (9))

6.3 A More Difficult NAS Problem Instance

In an effort to address these concerns, Monte-Carlo simulations of a more difficult problem
instance were run using the condensed NAS model with 3 = 0.61, and with 3 = Npt / Nx. The

communication requirements of this problem instance (referred to as the "augmented problem" in

this subsection), which are listed in Table A2 of Appendix A, were generated simply by increasing

the load on several of the physical links of Fig. 2.2. Here we refer to the problem instance defined

by the communication requirements of Fig. 2.2 as the "original problem." In this example, the

transformation from the original to the augmented problem results in an increase in the value of Nx

from 41 to 63, while the number of physical links in the network remains constant at 30. Thus Npj

/ Nx = 0.476. The minimum schedule length for this problem is 8 slots. The NAS heuristic

scheduled the problem in 9 slots.

Two series of simulations of the augmented problem were run from 100 different initial

states using the condensed NAS model with MLM, GSA, the parameter values shown in Table

6.1, and the two different values of P3. The simulations using 3 = 0.61 found 21 optimum

schedules, whereas the simulations using 03 = 0.476 found only 8 optimal solutions. These results

suggest that the use of a value of P3 = 0.61 might universally yield better performance than setting J0
proportional to a ratio of the number of physical links to the total number of transmissions required

to satisfy the specification.

44

An example of one of the schedules found by the NN is shown in Table 6.3. In the "Link"

column, the physical links are sequentially numbered and the adjacent nodes listed (see Fig. 2.1);

e.g., the first entry in the link column, 1 (4,5), indicates that the physical link between nodes 4 and

5 has been labeled link 1. The "Nx(p)" column lists the number of times the physical link must be

activated. In the "Slot" columns an "X" indicates a physical link activation, and a "b" indicates that

the physical link is blocked in that slot by some other activation. For example in slot 1, link 1

(4,5) is blocked by the activation of link 2 (5,13) and link 27 (2,4). Each of the cells in the "Slot"

columns corresponds to a neuron; thus, an "X" entry corresponds to an instantaneous state neuron

output voltage of 1. All of the remaining cells, both those with no entry and those with a "b"

entry, correspond to neurons whose instantaneous state output voltages are 0. Note that in this

schedule all but one slot are maximally scheduled; only one more legal link activation is possible in

the slot that is not maximally scheduled, i.e., link 20 may be activated without conflict in slot 1.

A schedule in which there are no open slots, i.e., a schedule in which every neuron is

either activated or blocked, is said to be a "maximal schedule." A schedule in which y% of the

slots are either activated or blocked is referred to as a y% maximal schedule. Thus, the schedule

shown in Table 6.3 is a 99.6% maximal schedule. Because the objective of the NN model is to

find a link activation schedule that satisfies the specified communication requirements in a

minimum number of slots, the percentage of slots that are blocked or activated does not give

directly a measure of the quality of the schedule. Rather, it is indirectly related to optimality and

gives an indication of the degree of difficulty involved in determining such a schedule. An

admissible schedule of minimum length is optimal, regardless of how near the schedule is to being

maximal.

It is hard to quantify precisely the difficulty of the scheduling problem for any particular

problem instance, especially before a schedule has been generated. For example, although the

minimum schedule lengths for both the original and the augmented problems discussed here are 8

slots, the augmented problem clearly has fewer degrees of freedom because 22 additional link
activations are scheduled in the same time interval. Whereas only one more link activation is

possible for the particular solution shown in Table 6.3, approximately 22 additional link activations

are possible for typical schedules produced for the original problem. The ability of our NN model

to produce a significant number of optimal solutions to such a highly-constrained problem

illustrates the power of our method.

45

Table 6.3. An optimum (8-slot) schedule that satisfies the requirements of Table A2
(X = physical link activation, b = blocked slot)

Slot
Link Nx(p) 1 2 3 4 5 6 7 8

1 b x b x
3 (13,20) 3 b b b b X

(20,24 b b b X b
5 (7,14) 3 b b b X X X b
6 (14,15) 3 X X b X b b b
7 (15,17) 1 b b b X
8 (9,12) 1 b b b b
9 (12,13) 1 b b b b b b X b
10 (13,19) 2 X X b b b b
11 (19,14) 2 X b b b TF b X
12 (15,16) b b b b X b X
13 (1,4) 1 b X b b b b b
14 (5,6) 3 b x b X b X
15 (6,1-) 2 b PF- b b X b
16 (21,2) b b b b b X X b
17 (22,20) '5 X X X X~ b b b
18 (1,2) b b b X b X X b

21 (,3) 3 b X X b b b b
20 (3, 6 X b X b X
23 (9,10) b b X b X b X b

24 (3,4) 1 b b b bFb X b b

26 (15,18)- 2 X b b X F b b b2 TX F b b b X27 (2,4) 2 X b bb b b Tb bXY b

28 (7,12) 1 b b b b b b
29 (7,11) 2 X b b b b bTX
30 (11,8) 1 b b X b b b

unblocked 1 0 0 0 0 0

6.3.1 A Third NAS Problem Instance

Four combinations of parameters were used in examining a third problem instance, which

is enumerated in Table A3 in Appendix A. The communication requirements of Table A3 result in

a lower bound on the schedule length of Bnas = 7; however, the length of the schedule produced

by the the NAS heuristic is 8 slots. Each of the four parameter combinations was used in attempts

to schedule the problem in 7 slots from 100 different initial states (the same 100 initial states were

used for each of the four parameter combinations). The parameter combinations used were 0 = 1.0

with GSA, I$ = 1.0 without GSA, 13 = 0.61 with GSA, and 13 = 0.61 without GS,*.-. All of the

46

other parameter values were as listed in Table 6.1, except, of course, the number of slots A which

was set to 7.

As shown in Fig. 6.6, the best results were obtained using (3 = 0.61: 67% of the runs
resulted in admissible 7-slot (optimal) schedules when GSA was used. When GSA was not

applied, 85% of the runs found optimal solutions. In contrast, the use of 3 = 1.0 in conjunction

with GSA resulted in only 27% optimal schedules. The use of 3 = 1.0 without GSA resulted in

39% optimal schedules. In the runs with (3 = 0.61 that failed to find an optimal schedule, the

conflicting constraints 2 and 3 that result from the use of a non-unit value of P caused the onset of

an oscillatory NN state. This is not unexpected since, as discussed in Section 6.2.3, the failure to
find an admissible schedule results in continued iteration of the equations of motion. With 13 set

less than one, the Lagrange multiplier X3 grows in an effort to enforce the modified third constraint

E3 ', which requires the activation of exactly Nx neurons. Meanwhile, X2 attempts to enforce the

second constraint, which requires exactly Nx neurons to be active. Thus, any success found by X3

results in violation of constraint 2 and increased growth of X2, and conversely. As the conflict

continues, the LMs, particularly X3 because of its impact on every neuron, become large enough to

dominate the equations of motion. Then, when an insufficient number of neurons are active, an

overly large X3 has an excitatory effect on every neuron, resulting in the activation of all neurons.

At the next iteration, too many neurons are active, the effect of X3 is inhibitory, and all of the

neurons are turned off. With the use of 3= 1.0, no such oscillatory behavior was exhibited.

0

85 10.61

8075, = 1.0
770

60

S55'
,50'

45

35 ,,,,,'

GSA no GSA GSA no GSA
Run

Figure 6.6. Results of efforts to schedule the requirements of Table A3 in 7 slots

This set of simulations with the requirements of Table A3, in contrast to the results of
simulations with the requirements of Table 2. 1, indicates that better results may be obtained in the

47

absence of GSA. In either case, however, the performance improvement as a result of the

presence or absence of GSA was small in comparison to the improved performance as a result of

the use of 13 = 0.61.

Although these simulations of three different problem instances using a few different 13
values constitute only a preliminary evaluation of the condensed NAS model with 3 < 1, they do

indicate that the model is capable of finding minimum-length schedules in a large fraction of the

runs. These simulations also indicate that the model is fairly robust to variations in the parameter

values.

6.4 Some Improvements to the NN Model

6.4.1 Time-Varying fl

The results of the Monte-Carlo simulations, which were presented above, have shown that

improved NN performance is obtained by using the condensed model with 13 less than one.

However, as discussed previously, the use of a constant, less-than-one value of 13, presents two

problems: First, continued iteration after the discovery of an admissible schedule must cause the

NN state to change to an inadmissible schedule. Second, continued iteration as a result of the

failure to discover an admissible schedule eventually leads to an oscillatory NN state. Therefore, a

function that causes 13 to initially be approximately equal to 0.61, and to approach 1.0 as the NN

converges, appears to be appropriate. In Section 6.2, the results of simulations indicated that

using 3 equal to a function of the first constraint energy (Eq. (9)) was not satisfactory; 10% fewer

optimal schedules were found using this function than were found using a constant value of 13 less

than one. In this section, the use of two versions of a 13-function that depends on the LMs X1 and

X3 is explored via the multiple-instance approach.

The two versions of the function that have been considered are a monotonic nondecreasing

13 function, designated as 3m, and a nonmonotonic version of the same function, designated as On.

These functions are updated at each iteration; thus at the (n + 1)st iteration, these equations are

given by:

iterations < 1000 OR) 3 < ?i[3n~ ~ ~~Qn -I)= X1" - P 3 II ')

1.(n + 1) P {13X4 iterations > 1000 AND X, <- X3 < 3 1,

1.0, otherwise

and

48

max{[,(n), P'}, iterations < iOOO OR A-3 < X1

[m(n+1)={nax{ m(n), P'+-.- -2X 1 - p iterationslOOOANDX X 3 <3Al .

1.0, otherwise

Here P' is the minimum value that either of these functions is allowed to take, and has ken set to

P"= 0.61 in all of the simulations that have used one of these functions. This function, in either

form, is intended to provide the benefits that have been obtained through the use of a small value of

3. Through a minimum of 1000 iteratire:, or longer if X3 remains smaller than X1, 0 maintains its

minimum value. After 1000 iterations, the value of 0 is allowed to approach unity, thereby

avoiding the onslaught of oscillations and allowing a tight ccivergence as an admissible state is

reached. The growth of 13 is driven by the difference in the rate of growth between X3 and XI.

Recall that X1 is the LM associated with the first constraint (which prohibits primary conflicts), and

X3 is the LM associated with the third constraint (which requires the activation of exactly N.

neurons). The value of X3 increases more rapidly than that of XI not only because (At)X3, the time

constant associated with X3, is five times as large as (At)X (see Table 6.5), but also because a less-

than-one value of 13 causes a conflict between the second and third constraints which, in turn,

results in larger E3 constraint-energy values.

6.4.2 A Traffic-Based Heuristic

Additionally, methods of extending conventionai heuristic concepts to the NN model for

nonsequential-activation scheduling have been examined. In the biased-greedy heuristic [3, 19], a

bias, proportional to a node's degree, is applied to every node so that high-degree nodes are given

a higher scheduling priority than lower-degree nodes. Thus, lower-degree nodes are scheduled in

slots that are not blocked by the "prescheduled" high-degree nodes. This concept of sche uling

high-degree nodes first may be extended to the condensed NAS NN model by applying a "traffic-

based bias" to each physical link. This is accomplished either by setting the initial value of the

MLM X:.2(0), or their associated time constants (&t)X,, proportional to the degree of physical link

p. The degree of link p, denoted by degt(p), is defined to be equal to the sum of the nodal degrees

of the two nodes upon which link p is incident. For example, if link p is incident upon nodes t and

r, degt(p) = deg(t) + deg(r). Setting X2p(0) proportional to dege(p) results in a more stringent

enforcement of the second constraint (which requires that physical link p be activated exactly Nx(p)

times) being applied to those neurons associated with higher-degree links in the early stages of the

iteration. Setting (At);., proportional to dege(p) results in increased enforcement of the second

constraint being applied to the neurons associated with high-degree nodes later in the iteration.

49

6.5 Evaluation of the NN Improvements vih the Multiple-Instance Approach

The concepts developed in Section 6.4, i.e., the use of Pm, 3,, or a traffic-based bias to

emphasize early scheduling of high-degree nodes (links), were evaluated by means of eight

multiple-instan..e simulations of the condensed NAS model. In each of these simulations, the goal

was to schedule to the problem instances in set (7, >7) in 7 slots. These are the path sets that have

Bna = 7 bu. that the NAS heuristic %as unable to schedule in 7 slots (see Table A5 in Appendix A

for a partial listing). All eight of the simulations were able to find optimum schedules (i.e.,

admissible schedules of length 7) for each of the 377 problem instances in set (7, >7), thus

verifying that the lower bound on all of these path sets is tight, and, more importantly, that the NN

model is capable of delivering better schedules than the NAS heuristic.

The results of tnese simulations, which are labeled A through H, are shown in Fig. 6.7.

The figure shows the average number of different initial NN states per problem instance required to

find an optimal schedule. The parameter values that make each of the simulations unique are

shown in Table 6.4, and the parameter values that were common to all of the simulations are listed

in Table 6 5. In the following subsections, we discuss the effects of the improvements to the NN

model that were described in Section 6.4.

.2 2.25-Z0 monotonic
U nonmonotonic

2.00

C

, AS

--- -------

t 1.5

Qin

I1.00
A B C D E F G H

Simulation
Figure 6.7. The average number of runs required to find an optimum schedule in

simulations using variations of the condensed NAS model.

50

Table 6.4. Parameters used in multiple-instance runs of the condensed NAS NN model
Run X2p(0) (At)xl I 13

A 1 .01 1T 0.61
B 1 .01 0 om

C degl(p)- 3 .01 0 [irm
D, D' 1 .01 0 [in

E degl(p)- 3 .01 0 [n

F 1 .05degl(p) 0 OnI

G, G' 1 .Oldegl(p) 0 O3n

H 1 .005degi(p) 0 &,1

Table 6.5. Common parameters for Runs A - H
I c(0) (AI)xl(,At)X31 AtI Ni.-max I Nc I IA IMIMI GSA

1 0.02 0.1 10-4 11000 5000 0.75 7 yes off

6.5.1 The Use of the Monotonic 1-Function: Simulations A - C

Simulations B and C both employed the monotonic function Pm. Figure 6.7 shows that, as

a result of the use of Om, both simulations were more efficient in finding optimal schedules than

simulation A, which was essentially a benchmark simulation that used the methods and parameter

values (i.e., the condensed model with a constant 03 value of 0.61) that had been found effective in

the Monte-Carlo simulations as described in Section 6.1. The fact that simulations B and C were,

more efficient than simulation A is noteworthy because the ability of simulation A to find an

optimal schedule in less than two (1.83) different initial states, on average, appears to indicate

good NN performance. In conjunction with the use of pm, a traffic-based bias was applied by

setting the initial values of the MLM k2p(0) proportional to dege(p) in Simulation C. This yielded

only a slight performance improvement over that of simulation B, in which no traffic-based bias

was employed. Thus, the use of Pm is the primary cause of the significantly improved

performance of simulations B and C, when compared to simulation A; i.e., the use of the

monotonic function Pm delivers much better results than the use of a constant value for P.

6.5.2 The Use of the Nonmonotonic fl-Function: Simulations D - E

Figure 6.7 shows that both simulations D and E delivered better performance than either

simulations B or C. This is because the nonmonotonic functicn On was used in simulations D and

E, as opposed to the monotonic function Pm which was used in simulations B and C. Otherwise,

the NN models used in simulations B and D are identical, as are the models used in simulations C

and E. As was the case in simulations B and C, the inclusion of a traffic-based hias (X2p(0)

51

proportional to degi(p)) caused the performance of simulation E to be slightly better than that of

simulation D, in which no traffic-based bias was used. However, the principal conclusion to be

drawn from these simulations is that the use of the nonmonotonic function 3n yields better

performance than can be obtained through the use of the monotonic function l3,.

6.5.3 The Use of a Traffic-Based Bias: Simulations E - H

Each of the simulations E, F, G, and H employs some form of traffic-based bias in

conjunction with the use of O. Simulation E used the form of traffic-based bias in which the
initial values of the MLM k.2p(0) are proportional to degi(p). As shown in Fig. 6.7 and discussed

in Section 6.5.2, the effects of this form of traffic-based bias are nearly negligible.

In simulations F, G, and H, separate time constants (At). were introduced to correspond

to each of the Lagrange multipliers of the form k2p. These time constants were assigned values
proportional to the degrees of their associated links, with the constant of proportionality for each of

the simulations listed in Table 6.4. Figure 6.7 shows that the value of the constant of

proportionality greatly impacts the NN performance. With this constant set to 0.05 (simulation F),

an average of 2.13 runs are required to find a schedule. This is the least-efficient performance of

any of the multiple-instance simulations. However, with the constant of proportionality set to 0.01

(simulation G), the most efficient performance of any of the simulations was obtained. This

simulation required an average of 1.28 different initial states to find a schedule.

The results of simulations E - H indicate that the use of a traffic-based bias can significantly

improve the NN performance. Application of the bias to the LM time constants has the largest

impact; however, this impact is beneficial only when the constant of proportionality is set to an

appropriate value. Application of the bias to the initial value of Lagrange multipliers of the form

X;2p yields only slightly improved NN performance. The use of either form of traffic-based bias

increases the NN complexity, and introduces new parameters whose best values must be

determined by trial and error. However, the performance achieved in simulation G indicates that

the benefits from the use of the traffic-based bias (applied to the LM time constants) outweigh the

added NN complexity.

6.5.4 NN Scheduling of Set (7, 7)

To further verify the ability of our NN model to find optimum schedules, two multiple-

instance simulations of the problem instances in set (7, 7) were run with the objective of finding 7-
slot schedules for each of the path sets. Recall that set (7, 7) consists of the 481 path sets that the

NAS heuristic was able to schedule in Bnas = 7 slots (see Table A6 in Appendix A for a partial

52

listing). The simulations, which are labeled D' and G', used the same sets of parameter values as

were used in simulations D and G, respectively (see Tables 6.4 and 6.5 for the parameter values,

and Sections 6.5.2 and 6.5.3 for discussions of the NN models). Both of these simulations were

able to discover optimum schedules for each of the problem instances. The results of these

simulations, in terms of the average number of different initial NN states required per problem

instance, are compared with those from simulations D and G (which scheduled the problem

instances in set (7, >7) in Fig. 6.8. A comparison of the results of simulations D' and G' to those

of simulations D and G, respectively, indicates that the problem instances in set (7, >7) are, in fact,

more difficult to schedule (on the average) than those in set (7, 7).

--2.00

St(7, >7

1.75 Set (7,7)

0

.0 1.50 C5

law :% %ti%

% D'

1.25

M1.00 ,s/

D D' G G'

Simulation

Figure 6.8. The average number of runs required to find optimum schedules
for problem instances in set (7, >7) and set (7, 7)

6.6 An Evaluation of the Basic and the Adjustable-Length NAS Models

The basic and the adjustable-length NAS NN models offer certain advantages over the

condensed NAS model and its variants, even though they do not provide comparable performance.

The main advantage of the basic model is its simple formulation, which may be relatively easily

implemented. The adjustable-length model, on the other hand, is a more complex formulation. It

adds one constraint, and requires approximately 1.5 times the number of neurons required in the

basic model. Nonetheless, the adjustable-length model potentially yields an admissible, if not

optimal, schedule from every run. It also provides an important step toward the development of a

joint routing-scheduling NN model, which is discussed in Section 8.

53

We have performed 12 Monte-Carlo simulations to evaluate the performance of the basic

and the adjustable-length NAS models. The simulations are labeled A through F (no relationship

to the simulations A through H that were presented in Section 6.5), and A' through F'.

Simulations A through F used the basic model, and simulations A' through F used the adjustable-

length model, to schedule the communication requirements of Table 2.1. Recall that Bnas = 8 for

this example; thus the minimum schedule length that can be found is 8 slots. The parameter values

used in these simulations are shown in Table 6.6.

Table 6.6. NAS NN parameters used in simulations of the basic and the adjustable-len models

Run x)(O) (At)x1 (AX (At)X3 (At)X5 At IINi-max Nc To 'I Gfenj
A, A' I 1 I 0.01 I 0.1 I 0.1 I 0.01 10 11012xl04 104 o Joff off off

B-F, B'-F' 1 0.02 0.01 0.01 0.01 10
4 10 2x104 i 0.75 1.01 50 104

The results of Runs A through F are shown in Fig. 6.9, and the results of Runs A' through

F are shown in Fig. 6.10. The similarities and differences between each of the runs are also

summarized in the figures. The data shown in these two figures illustrates four important points:

Point 1: The use of [3 = 0.61, yields significantly better results than the use of a unit-

valued 03 in all of the NAS models. This can be seen in Fig. 6.9, where, using 03 = 0.61, Run D

found nearly twice as many optimal schedules as Run C, which used 3 = 1.0. The only difference

between these two runs was the value of 13. In the condensed basic model (Runs E and F, Fig.

6.9), the adjustable-length model (Runs C' and D', Fig. 6.10), and the condensed adjustable-

length model (Runs E' and F', Fig. 6.10), the performance is also notably improved by using a

less-than-one value of 13, rather than a unit value of 13, although the improvement is not as large as

that seen with the basic model.

Point 2: The use of the condensed model in conjunction with the use of 13 = 0.61 further

improves the performance of both the basic and the adjustable-length models. With [3 = 0.61 in

Run F, the condensed basic model found 100% optimal schedules, which is 5% more than were

found by its uncondensed counterpart in Run D (see Fig. 6.9). The condensed adjustable-length

model used in Run F' found 7% more admissible and 4% more optimal schedules than the

uncondensed model used in Run D' (see Fig. 6.10). With a unit 13 value, "condensing" the basic

model (compare condensed Run E to uncondensed Run C in Fig. 6.9) also yields a much larger

percentage of optimal solutions. However, as can be seen by comparing Run E' to Run C' in Fig.

6.10, "condensing" the adjustable-length model that uses a unit-value for 3 yields mixed results; it

increases the percentage of admiss.1ile solutions while reducing the percentage of optimal

solutions.

54

100'
95
90.

~85
~80
'75

6 70
E 65

~60
55

430

20
15

GSA GSA GSA GSA GSA
ULM MLM MLM MLM

Run conldensed condensed

Figure 6.9. Results of simulations of variations of the basic NAS NN model (A* =8 slots)

100% m Optimal
95 E3 ~%dmissble

85 %00%%

80 %

75 % %%'%

760
cf~~ le, Ii Ii it-I,

40 '
ii%% %% i iii

%t %i %i %t %i %%

30

25 % %% %%i % %

20 iiit tit t i

15 i iiti

A' B# C' D' E' F
0= =1 P0.61 1w =0.61

GSA GSA GSA GSA GSA
MLM MLM MLM ULM

condese conened

Run

Figure 6.10. Results of simulations of the adjustable-length NAS NN model (A* = 8 slots)

55

Point 3: Both GSA and MLM make important contributions to the NN performance. In

the absence of either of these aids, neither the basic (Run A, Fig. 6.9) nor the adjustable-length
(Run A', Fig. 6.10) models were able to find more than 20% optimal schedules. But with the use
of GSA and MLM, the percentage of optimal schedules found by the basic model (Run C, Fig.
6.9) was increased to 50%, and the adjustable-length model (Run C', Fig. 6.10) found 80%
optimal schedules.

Point 4: All variants of the adjustable-length model deliver a reasonably high percentage of
admissible schedules. As discussed in Section 4.5.3, the purpose of the adjustable-length NN
model is, primarily, to deliver admissible schedules consistently, and, secondarily, to yield nearly

minimum, if not minimum, length schedules. As shown in Fig. 6.10, at least 90% of the
schedules found ;- . ach simulation of the adjustable-length model, except Run C', are admissible.

In Run C', 80% of the schedules are admissible. Thus, although this model does not yield an

admissible schedule from .very initial state, it does yield admissible schedules from a large fraction
of starting points, regardless of the underlying model variant. Furthermore, simulations of both
the condensed and the uncondensed adjustable-length models using 0 = 0.61, GSA, and MLM
(Runs F and D' respectively) found more than 90% optimal schedules, demonstrating that the

adjustable-length model is also capable of delivering minimum-length schedules consistently.

6.7 Conclusions on the NAS NN Model

In this section, we have presented the results from simulations of three different NAS NN
models, the basic, the condensed, and the adjustable-length models. In both Monte-Carlo and

multiple-instance simulations, very satisfactory results were obtained using the condensed NAS
model with 0 = 0.61 and MLM. In Monte-Carlo simulations of the problem instance given by
Table 2.1, 100% of the schedules found by this model were optimal. Simulations of the heavily-

congested problem instance given by Table A2, which required near-maximal scheduling, resulted
in 21% optimal solutions, thus demonstrating the ability of our method to determine optimal

schedules for highly-constrained problems. The model was also able to schedule optimally all of
the problem instances in sets (7, 7) and (7, >7), thereby demonstrairg the ability of the NN model

to produce optimal schedules for many instances for which the NAS heuristic was unable to do so.
The efficiency of the condensed NAS model was increased by the introduction of a traffic-based

heuristic and the use of a time-varying 3. Multiple-instance simulations of set (7, >7) with this

more-efficient model found optimal solutions in an average of 30% fewer runs than were required
by the condensed NN model that used 03 = 0.61 and MLM. These simulations of the condensed
NAS NN model have shown that the model is capable of finding minimum-length schedules in a
large fraction of the runs. They also indicate that the model is fairly robust to variations in the
parameter values and in the communication requirements. Thus, we feel that the model is

applicable to, and will perform well in, a broad class of scheduling problems.

56

The basic and the adjustable-length NAS NN models offer certain advantages over the

condensed NAS model and its variants, even though they do not provide comparable performance.

The basic model provides the foundation on which all of the other NAS NN models are built. The

adjustable-length model (usually) provides an increased percentage of admissible schedules. In
addition, because this model does not require an accurate estimate of the minimum schedule length,
it provides an important step toward the development of a joint routing-scheduling NN model for
which such an estimate may be difficult. Simulations of both the basic and the adjustable-length

models have demonstrated their ability to deliver reasonably good performance.

7.0 SAS SIMULATION RESULTS

All of the SAS simulations have used some form of the reduced SAS model. The use of

this model, besides reducing the dimensionality of the solution space by eliminating a number of

inadmissible solutions, also significantly reduces the number of neurons in the NN. Since the

number of computations required at each iteration of the NN model is approximately proportional

to the square of the number of neurons, a reduction in the number of neurons markedly reduces the

time required to complete a simulation.

7.1 Sequential-Activation Scheduling with the Monte-Carlo Approach

The minimum length of a sequential-activation schedule that satisfies the communication

requirements of Table 2.1 with no scheduling conflicts is 9 slots. Table 7.1 lists one such

schedule that was found by a SAS NN model in Run D,13 which will be discussed soon. In the
table, entries are made only in the cells that correspond to a neuron in the reduced SAS model. The

notation used is the same as that used in Table 4.1 in Section 4.5.2: a cell entry of "X" denotes a
link activation, "o" denotes an open slot (i.e., activation of the link would not result in conflict),

"b" denotes a blocked slot (i.e., one in which activation will result in a primary conflict), and "i"

denotes an ineligible slot (i.e., a slot in which activation of the link must cause a sequence

conflict). The blank cells represent the slots in which the link can never be activated in an
admissible sequential-activation schedule. Of the 225 cells containing an entry (each of which

represents a neuron), there are 34 "open" cells. Thus, the schedule shown in Table 7.1 is an

84.9% maximal schedule. In Section 7.5.4 we discuss the schedule of a more highly-constrained

problem in which the choice of path sets permits satisfaction of the communication requirements in

eight slots, resulting in a schedule that is 96.4% maximal.

13 In this section (Section 7), although the alphabetically labeled simulations may have the same labels as those in
Section 6, they are unrelated.

57

Table 7.1. An admissible 9-slot schedule satisfying the requirements of Table 2.1.
(X = Link activation, o = open for activation, b = link blockage,

i = ineligible for activation owing to the blockage of an adjacent link)
Indices Slot

Patht Link (SD, link) 1 2 3 4 5 6 7 8 9(4->5) - 1,1 k

0 (5->13) 1,2 - b b b b
1(13>20 1, b XT b b
(20->24) 1 i b b b o X

L(7-> 14) 2,1 X b b b i b b
6 (14->15) 2,2 X b 17 b

- (15->17) 2, o X o b b b b
(9->12) 3,1 X b 1 1

(12->13) J, 2 X b b b
10 (13->19) 7,T -r b b b

(19->14) 3,4 X o b -b
(14->15) 3,5 o X b b
(15->16) 3,6 - b b
(1->4) 4,1 b b o X b

12 (4->5) 4,2 b i b X b b
(5->13) 4,3 b b b X b b
(13->19 4,4 b b b b b X

20 (5->6) 5,1 b b b b o b
(6->11) 5,2 o b b o X o o b
(21->22) 6,1 -o o o o
(22->20) ,72 o o o b IX

23 (20->13) 6,3 b b b b X
(13->5) 6,Z b b b b X
(5->6) 6,5 b -b -I- bQ1->2)' 7,1 X b o b
(2->3) 7,2 b o i

36 1(3->6)_ 7, X b o b
(->) ,4 X o b o
(8->9) 7, - X o
(9->10) '7,6 b o o X
(34') 8,1 X b b b b
(4->7) 8,2 ,b b b b X

42 (7->14) 8,3 b b ibX

(14->15) 8,4 b i b T X
- (15->18) 8,5 i b F T

(2->4) 9,1 b b o b b b X
45 (-7) 79,2 b bF b b b b X

(7->12) b b i b b b X
(14->7) 10,1 b b X T i T b

50 (7->1l) 10,2 i bX o b b b
(11->8) 110,3 - oo o

t See Table AI in Appendix A.

58

In an effort to find 9-slot (optimal) sequential-activation schedules that satisfy the
communication requirements of Table 2.1, a Monte-Carlo simulation, Run C, of the reduced SAS

model with MLM and GSA was run from 100 different initial states using the parameter values

shown in Tables 7.2 and 7.3. Previous efforts without MLM, GSA, or neuron input voltage

limiting, as shown in Table 7.2, had found only 2% optimal schedules (Run B), and, in fact, were

able to find 10-slot sequential-activation schedules in only 8% of the simulations of Run A. With
the use of MLM, GSA, and input voltage limiting in Run C, the NN was able to find 9-slot

schedules in 7% of the simulations. The distribution of the number and type of scheduling

conflicts as a result of the schedules found by Run C are shown in Fig. 7.1.

Table 7.2. Summary of the results from, and differences between, Runs A - C,
simulations of the reduced SAS NN model

Run (At)kx (At)x.2j At I Ni-max A GSA MMI % %
(At1-3 admissible optimal

0. 0.05 L0 5 5 25000 cc 10 no no 8 0
B 0.01 0.1 10-5 5 25000 cc 9 no no 2 2
C 0.02 0.1 10-4 10 11000 0.75 9 yes yes 7 7

Table 7.3. Common parameters for Runs A - C

(the GSA parameters app only to Run C)
Xc(O) (At)4I NcI To IT IGend IMLI%4

1 0.01 104 0.01 50 104 yes tI
50

45. Primary Conflicts

40umbe Sequence Conflicts35'i I Primarycofit + Sequence

W~an 35 onfict

30
*'25i

5 M
0 1 2 3 4 5 6 7

Number of Scheduling Conflicts
Figure 7. 1. Results from Run C, a Monte-Carlo simulation of the reduced SAS model with GSA

and MLM

59

In Fig. 7.1, the black bars represent primary conflicts, the striped bars represent sequence
conflicts, and the gray bars represent the total number of scheduling conflicts, both primary and
sequence. For example, the gray bar representing two scheduling conflicts includes the three cases
of: no primary conflicts and two sequence conflicts, one of each type, or two primary conflicts and
no sequence conflicts. Referring to the bars for zero conflicts, the figure shows that approximately
10% of the schedules found in Run C had no primary conflicts, 44% had no sequence conflicts,
and 8% were optimal schedules because they had no conflicts of either type. The figure indicates
that the NN model was more successful in enforcing the sequential-activation constraint than the
primary conflicts constraint, even though the primary conflicts time constant (At)).1 was twice as
large as the sequence conflicts time constant (At)4 (see Tables 7.2 and 7.3).

7.2 Skewed Initialization

As a consequence of the disappointing results obtained in Run C, which are markedly
inferior to the results obtained for the NAS model (without the heuristics that were subsequently
developed for it), it has been necessary to develop heuristics to improve NN performance. As was
done in modifying the NAS NN model, the concepts used in developing a heuristic SAS algorithm
were applied to the SAS NN model. Much improved SAS performance was obtained by, in
essence, setting the initial neuron output voltages so that the initial instantaneous state was free of
sequence conflicts. This is done by setting the initial output voltage value of neuron ijk to

0X+ , (0)J 2) Xik+ 2i) (10)

where Xi + 1 = A - L(i) + 1 is the number of neurons that represent each link in the path

connecting SD pair i, and mi is the slope of the initial output voltage Vijk(O) as a function of the

time slot k that neuron ijk represents. This function is plotted in Fig. 7.2. We call this type of
neuron initialization a "skewed initialization." We have used mi < 0; however, positive values of

mi can also be used, as discussed below. Setting mi = 0 results in the original form of
initialization, as discussed in Section 5.0. As in Section 5.0, a random perturbation is added to

each neuron following skewed initialization of the NN so that different random seeds cause

different portions of the solution space to be explored.

60

_ _ 1.0_

0X+1 2z 1_ __ _ __

0.0
j+-! j+ xi

Slot Number k
Figure 7.2. Initial neuron output voltage as a result of skewed initialization

To keep the initial output voltages within the output voltage limits, the slope is bounded by
Imil 5 2/(Xi (Xj+ I)). Note that, under this function if the slope mi is within its bound for all i,

j+xi
I Vk (0) = 1.0
k=j

as desired. Thus, if-2/(Xi (Xi+l)) < mi < 0, the initial instantaneous state will declare all neurons
ijj, i = 1, ..., Nsd, j = 1, ..., L(i), to be "on" because these neurons will have the largest output

voltages. In other words, for mi < 0, the fth link in the path is activated in the jth slot of the cycle,

which is the first slot in which it could possibly be activated without violating the sequential-

activation requirement. Alternatively, for a positive slope (mi > 0), all neurons ij(j + Xi) will
initially be "on;" i.e., each link is activated in the last possible slot. Either choice, if used
consistently for all the links on the same path, will provide an initial state (based on the
instantaneous state description) that is free of sequence conflicts. However, this initial state is not
necessarily free from primary conflicts. Typically, after this type of initialization, the NN must

remove a large number of primary conflicts. As the number of primary conflicts are reduced,
temporary sequence conflicts are often generated. However, simulation results have shown that

the discovery of a conflict-free schedule is much more likely when the initial instantaneous state is

fre of sequence conflicts.

61

It might be beneficial to use a positive value of mi for some paths, and a negative value for
others. This approach would reduce the expected number of primary conflicts that occur in the
initial instantaneous state without creating any sequence conflicts. In this approach, in the initial
instantaneous state, the neurons representing the a slot in which links in the paths with mi > 0
can be legally activated are declared to be "on," and the neurons representing the firs slot in which
links in the paths with mi < 0 can be legally activated are also declared to be "on." Thus, the
"tentative" activations of the initial instantaneous state are split between the early and the late slots.
A better approach, which is fully discussed in Section 7.3, would be to randomly distribute the
tentative activations over the entire set of legal slots for each link, rather than clustering them in the
early and/or late slots.

We have developed three different approaches for assigning a value to mi. In the approach

that we refer to as the "conditionally-fixed-value" approach, the value of mi is given by
2

mMi =m7 Xi,(Xi + 1)
C x =x+_2)(11)

{xi(xi+ 1)' otherwise

Under this method, mi is set to a fixed constant value mc for paths that are sufficiently short (i.e.,
such that Xi(Xi + 1) < 2/mcl), whereas it varies for longer paths. In particular, with A = 9 and mc

= -0.1, this approach gives an initial instantaneous state in which the first legal slots of longer
paths (paths longer than 5 hops) are activated and the last legal slots of shorter paths are activated.
This occurs because there are fewer slots in which a link in a longer path may be legally activated.
Therefore, mi = mc is used in Eq. (10) as it assigns positive initial values to all neurons
representing each link on the longer paths, as shown in Fig. 7.2. In the shorter paths (5 5 hops),
there are more slots in which each link may be legally activated, and the slope bound must be
applied. Thus, for the SD pairs connected by these short paths, Eq. (10) assigns a value of
Vij(j+x) = 0.5 to the neurons that represent the last slots in which links of the path connecting SD
pair i may be legally activated, because mi = -2/(Xi (Xi + 1)). This approach tends toward initial
overactivation because all of the links ij that form a "short" path (in this example, any path i with
L(i) 5 hops) have a corresponding set of neurons ijk that have

j+Xi
YjX~i (0) = 1.5.
kfj

Such overactivation can result in severe oscillatory behavior, which is discussed in Section 7.5.2.

62

In the second approach, which we call the "path-length-dependent" approach, the value of

mi depends on the path length as follows:

0m= X(Xj + I)'

where 101 < 2 is a parameter that controls the amount of skew; a value of 0 = ±2 gives maximum

skew, and a value of 0 = 0 provides no skew. We have used 0 = -1 so that the slope of the
neuron output voltage initialization function is oie half of the slope limit for every SD pair,

regardless of its path length. Thus, the case of 5 0 in Eq. (10) is avoided, eliminating the need to

assign initial output voltages values of 0.5.

A third approach, which we call the "hybrid approach" uses concepts from both the

conditionally-fixed-value approach and the path-length-dependent approach. In this approach, the

value of mi is given by the following simple modification of the conditionally-fixed-value

formulation of Eq. (11):

MCI < (2+l)

X(X + I)

By keeping the slope mi within its bound, this modification eliminates the overactivation problem

associated with the conditionally-fixed-value approach. When the magnitude of the conditionally-

fixed slope value mc exceeds the bound, a pa.h-length-dependent slope value is used with the
opposite sign to that of mc. This prevents the assignment of an initial neuron output-voltage value

of 0.5 (i.e., the 0 case in Eq. (10)), while favoring the activation of links in "long" paths in their
first legal slots, and favoring the activation of links in "short" paths in their last legal slots as was

done in the original conditionally-fixed-value approach.

7.3 Skewed Randomization

Skewed initialization, which was discussed in Section 7.2, provides an initial instantaneous

state that is free of sequence conflicts, but probably contains primary conflicts. Because skewed

initialization causes the tentative activation (i.e., the initial activations declared by the instantaneous

state) of all of the neurons that represent the first (or the last) slot in which a link may be legally

activated, the expected number of primary conflicts in the initial instantaneous state is relatively

high. As suggested in Section 7.2, this number can be reduced by randomly distributing the

63

tentative activations (i.e., the initial activations declared by the instantaneous state) over the entire

set of neurons that represent each link. In this section, we present a method, called "skewed

randomization," that uses a different form of NN perturbation than the one described in Section 5.0

in conjunction with skewed initialization, to provide an initial instantaneous state that is free of

sequence conflicts, and to reduce the expected number of prim.ry conflicts in the initial

instantaneous state.

With the skewed randomization method, we randomly select one neuron to be tentatively

activated (i.e., to be assigned the largest initial output voltage of any of the neurons ijk, k =j, ... , j

+ Xi; and hence to be declared "on" by the instantaneous state interpretation) out of the Xi + 1

neurons that represent link ij, subject to the constraint that no sequence conflicts are ceated. The

set of neuror- that represent link il (i.e., tne link incident on the source node of SD pair i) is

comprised of neurons (ilk : 1 < k < 1 +Xi1. Of these neurons we randomly select neuron ilkI to

be tentatively activated so that the ii, ,tantaneous state will declare link il to be active in slot k'. For

all links that are not incident on the souTe node, the set of neurons from which neuron ijk'- the

neuron to be tentatively activated for link ij - is selected must be chosen so Ls to prevent the

introduction of sequence conflicts into the initial instantaneous state. Therefore, if 1 > 1, we

'indomly select neuron ijk' from the set [ijk : max j - 1, k' selected for link i(j - 1)) < k <j +

X. Then we apply the modified path-length-dependent initialization given by

jk (0)= 1 1 +mi((k+k-2,)mod(X + 1)4-- (12)=xi +1 2

Comparing the initial output voltages given by thi, , ,f skt:wed randomization to those

obtained ,ising the path-length-dependent form of s , ,.l Jization discussed in Section 7.2,

with mi < 0 in both cases, we find that

V (J(k+i)() ' V. + n:5 j + X

,j{(k0+n)mod(Xa)+j}(O), k' +n> j+ Xi

skewed initialization skewed randomization

for n = 0, ... , Xi. Thus, the same set of output voltage values are obtained in both cases; they are

simply applied to different reurons. With skewed randomization, the initialization provided by

randomly selecting the neurons ijk' replaces the additive random perturbation that was used in all

of our other NN models.

64

7.4 Evaluation of Skewed Initialization and/or Randomization via Monte-Carlo

Simulation

The effects of skewed initialization and/or skewed randomization on the performance of the

reduced SAS NN model were evaluated by means of five Monte-Carlo simulations. Table 7.4

summarizes the results of, and the differences between, these five runs. The parameter values that

were common to all of the runs are shown in Table 7.5. Each of the runs attempted to find 9-slot

sequential-activation schedules (optimum schedules) that satisfy the requirements of Table 2.1 and

Fig. 2.2 from 100 different initial states.

In Table 7.4, an entry of "perturbation" in the randomization column means that the run

used the standard method of randomizing the initial state (which involves adding a random quantity

to each of the neuron's initial input voltages, as described in Section 5.0). The initialization and

the "mc or 0" columns describe the type of initialization and the initialization parameter values that
were used.

Table 7.4. Differences between the simulations using skewed initialization and/or randomization
Run randomization P initialization mc or 0 To TT Genjd % optimal

D perturbation I conditionally mc = -0.1 off off off 79
fixed-value

D' perturbation 1 hybrid mc = -0.1 off off off 64
0 = 1.9

E perturbation 1 path-length 0 = -1 0.01 50 io 4 7
dependent I

F skewed 1 path-length 0 = -1 0.01 50 104 9
dependent

G skewed pn path-length 0 = -1 0.01 50 104 21
I___ dependent IIII

Table 7.5. Parameters values used in all simulations using skewed initialization
and/or randomization

3c(0) (At)XI (At)X2ij (At)X4 At I [Nimax Ncl& A MLM
(At)X3

4 0.02 0.1 0.01 104 10 11000 104 0.75 9 yes

In Run D, the conditionally-fixed-value approach was used in the absence of simulated

annealing. All of the remaining parameter values were the same as those used in Run C (see

Section 7.1), which found optimal schedules in 7% of its simulations. As noted in Table 7.4, Run

D found optimal schedules in 79% of the runs. Thus, the percentage of optimum schedules found

by the NN is an order of magnitude larger when this form of skewed initialization is used. Within

65

the set of 79 optimal solutions found in Run D, there are 39 different schedules. The fact that

many different optimal schedules were found confirms that the use of different random seeds

results in the search of different regions of the state space. The average number of iterations
required to find an optimal schedule, given that an optimal schedule was found, was 2888

iterations; the average number of iterations to termination, including the runs that failed to remove

all conflicts, was 5598 iteratio. is.

As can be seen in Table 7.4, Run D gave the best performance by far. However, the use of

the conditionally-fixed-value form of skewed initialization may cause initial neuron overactivation,

as noted in Section 7.2. Such overactivation can result in severe oscillatory behavior, which is

discussed in Section 7.5.2. This problem can be eliminated by using the hybrid form of

initialization. In a Monte-Carlo simulation using hybrid initialization with 0 = 1.5 and the

parameter values of Run D, 39% of the schedules found in simulations from 100 different states
were optimal. Increasing the value of 0 to 1.9 in Run D' produced a total of 64 optimal schedules

in 100 attempts. The percentage of optimal schedules produced using the hybrid form of
initialization is not as high as that produced using the conditionally-fixed-value form, but it does

yield nearly the same performance without the danger of overactivation. However, multiple-
instance simulations, which will be discussed further in Section 7.5, have indicated that neither the

hybrid, nor the conditionally-fixed-value form of initialization provides the consistently good

performance that is obtained when using the path-length-dependent form of initialization is used to

schedule a number of different problem instances.

Runs E, F, and G were performed in an effort to discover a NN model capable of

delivering good performance while using the path-length-dependent form of skewed initialization.

This form of initialization avoids the overactivation problem while, hopefully, yielding the desired

effects. In Run E, the use of the path-length-dependent approach in conjunction with GSA yielded

only 7% admissible solutions. This is the same fraction as was obtained in Run C where, in

essence, mi was set to 0 for all i. Both Runs F and G used the path-length-dependent approach to

initialization in conjunction with skewed randomization. In both runs, the NN evolution in the

presence of GSA resulted in improved performance over Run E. The parameters for both Runs F

and G are identical with the exception of P3. Recall that J5 is a coefficient that adjusts the number of

transmissions Nx (neuron activations) required by the third constraint. In Runs D, E, and F, the

parameter 0 was set to one. Run G, however, used the nonmonotonically increasing function Pn,
which was discussed in Section 6.4. When the use of P3 < I was introduced in the NAS

simulations, significantly improved performance was noted. If Run D is disregarded, the same

holds here; the percentage of optimum schedules found by the NN using P,, was more than twice

66

as large as the percentage found when using a constant, unit-valued P. Although it does not match
the performance of Run D, Run G demonstrates that path-length-dependent initialization may be

used to obtain reasonably good results without danger of initially overactivating the NN and thus
causing oscillatory behavior.

7.5 Evaluation of Skewed Initialization and/or Randomization via Multiple-

Instance Simulation

Multiple-instance simulations of the reduced SAS NN model were performed to evaluate

the use of skewed initialization and/or randomization. These simulations scheduled the 50 problem

instances in set (7, >7) that are listed in Table A5 in Appendix A. Recall that each of the problem

instances in set (7, >7) has Bnas = 7 as a lower bound on its nonsequential-activation schedule

length and a NAS heuristic schedule length greater than 7 slots. Although these problems

instances were selected on the basis of a nonsequential-activation scheduling analysis of the

network of Fig. 2.1 and of the paths listed in Table Al in Appendix A, they represent a set of
problem instances that offers a degree of diversity while maintaining some common characteristics.

Of the 377 path sets that are elements of the set (7, >7), 233 have lower bounds on the sequential

schedule length of Bsas = 8 slots, 114 have Bsas = 9 slots, and the remaining path sets have Bsas =

10 slots. The SAS heuristic found schedules for these specifications with lengths ranging from 9

slots to 14 slots. The majority of the schedules generated by the heuristic were 10 or 11 slots long;

25 were 9-slot schedules, and 5 were 14-slot schedules. None of the heuristic schedules were as

short as their corresponding bound.

Before presenting the results of these simulations in Sections 7.5.2 and 7.5.3, concerns

that are unique to SAS multiple-instance simulation are discussed in Section 7.5.1. In Section

7.5.4, we discuss the results of multiple-instance simulations that scheduled a set of more heavily-

constrained problem instances.

7.5.1 SAS Multiple-Instance Simulation Issues

Since A* (the shortest possible schedule length for a particular problem instance) is not

known a priori, an attempt is first made to generate a schedule of length Ao = Bsas. If an

admissible schedule has not been found after N,-,= attempts, the value of A is incremented by one

and up to Ns-= attempts are m,.de again. This process is repeated until an admissible solution is

found. The parameter Ns-max is critical to both the quality of the solution and to computational

efficiency. Clearly, none of the runs for which A < A* can possibly produce an admissible

schedule. Thus, use of an excessively large value of Ns-max results in a large number of futile

67

runs. On the other hand, use of too small a value of Ns-max can result in the failure to find a

schedule of optimal length. For example, increasing the value of Ns-max from 5 to 20 in a pair of

otherwise identical multiple-instance SAS simulations permitted the generation of shorter schedules

for a significant number of problem instances; the percentage of schedules that were no longer than

those generated by the SAS heuristic was increased from 57.4% to 90%. Thus, although the NN

is able to find an admissible schedule fairly rapidly if Ns-max = 5 (because the schedule length is

increased after only five unsuccessful attempts), it is also likely to overlook admissible schedules

with shorter length. Increasing the value of Ns-ma to 20 significantly increases the probability of

discovering a "short" schedule.

We have not been able to determine the length of an optimum sequential-activation schedule

for many of the problem instances in the set (7, >7). When a minimum schedule length has been

ascertained for a problem instance, confirmation has been achieved almost exclusively by means of

the discovery of a NN schedule with length that matches the tightened bound (i.e., for a few

problem instances, we have been able to increment Bsas by examination of the network; e.g., see

Appendix B). Therefore, in the following subsections, when we speak of the percentage of

minimum-length schedules, we are actually referring to the subset of problem instances that have

been scheduled by the NN and for which the minimum schedule length is known. To assess the

quality of all of the admissible schedules generated in a simulation, including those with unknown

minimum length, we compare their lengths to the lengths of the schedules found by the SAS

heuristic.

7.5.2 Evaluation of the Conditionally-Fixed-Value and the Hybrid Form of Initialization

A multiple-instance simulation, labeled Run H, was programmed to schedule the 50

problem instances in set (7, >7) that are listed in Table A5 in Appendix A. Run H uses nearly the

same NN model as was used in Run D, i.e., the model that yielded the best performance in the

Monte-Carlo simulations (see Section 7.4). In Run D, the conditionally-fixed-value form of

skewed initialization was used, and the NN was iterated in the absence of simulated annealing.

Run H differs in that it does apply Gaussian simulated annealing, and that it does not deliver the

same quality of performance as was obtained in Run D. However, the performance degradation is

not caused by the use of GSA; it is actually a result of the conditionally fixed-value form of skewed

initialization that was used in both runs.

In Run H, the parameter Ns.,a=, that is the number of different initial states that must be

simulated before incrementing A, was set equal to five. Admissible nonoptimal schedules were

successfully found for the first nine problem instances listed in Table A5. Five of these schedules

68

were shorter, and two were longer, than the schedule generated by the SAS heuristic for the

corresponding problem instance. In attempting to schedule the tenth problem instance, the NN

state became oscillatory, and the run was terminated.

Erplanation of Oscillatory Behavior

In the Monte-Carlo simulations of Run D, the value of A was fixed at 9 slots. In the

multiple-instance simulations of Run H, A0 is set to Bsas and A is incremented until an admissible

schedule is found. As the value of A is increased as a result of the failure to find an admissible

schedule within Ns-n= (= 5) attempts from different initial states, the number of SD pairs for

which ImcI = 0.1 > 2/(Xi(Xi + 1)) also increases. In turn, a greater number of neurons are

assigned an initial output voltage of 0.5. In some cases this presents no particular problems, and,

as indicated by the results of Run D and the first nine solutions of Run H, actually works fairly

well until the number of neurons that are assigned initial output voltages values of 0.5 exceeds

some problem-dependent threshold. It appears that when the threshold is exceeded, the high

average initial activation level of the NN causes excessive growth of the LM and, in short order,

results in an oscillatory state where the output voltages of all of the neurons is alternately 0 and 1 at

each ite.ation.

This behavior was exhibited when Run H attempted to schedule the tenth problem instance

listed in Table A5.14 After failing to find admissible 8-, 9-, or 10-slot schedules, but exhibiting no

oscillatory tendencies, the oscillation threshold was exceeded when the 11-slot NN was initialized.

Simulations from five different initial states with 11, 12, and 13 slots all became oscillatory within

15 iterations. The tenth problem instance requires a total of 45 transmissions (i.e., Nx = 45). Two

of the paths specified by this problem instance are 7 hops long, the remaining eight paths are

shorter. With mc = -0.1 and A = 10, the neurons that represent the last slot in which links in

paths shorter than 7 hops may be legally activated will be assigned an initial output voltage of 0.5.

Thus, the sum of the output voltages of the neurons that represent each of the 31 links in paths

shorter than 7 hops is equal to 1.5 (neglecting the perturbations). When A = 11, the neurons that

represent the last slot in which the links in paths shorter than 8 hops may be legally activated are

assigned an initial output voltage of 0.5. Since all of the paths in this problem instance are shorter

than 8 hops, all of the links are initially favored in their last legal slot, and the corresponding

neurons are assigned an initial output voltage of 0.5. Thus, the sum of the output voltages of the

4 The length of the optimum schedule for this problem instance is not known. We have been able to increment
Bsas (see Appendix B) so that the greatest known lower bound is 9 slots. The shortest admissible schedule that has
been found is 10 slots.

69

sets of neurons that represent each of the links is equal to 1.5, resulting in an excessive initial NN

activation level.

In an effort to duplicate the performance of Run D, a rerun of Run H without GSA was

also tried. The results were the same as those from Run H through the third problem instance.

However, in the simulation that attempted to schedule fourth problem instance listed in Table A5,

the oscillatory behavior - that was not apparent until the tenth problem instance in Run H where

GSA was used - was once again observed. The conclusion is that, in this case, the use of

additive noise may be helpful in delaying the onslaught of oscillations by coincidentally lowering

the average activation level in the NN.

A Simulation Using Hybrid Initialization

A third multiple-instance simulation, labeled Run I, was performed using the hybrid form

of ihitializadLon (with mc = -0.1, 0 = 1.9, and Ns.max = 20; the remaining parameter values were

the same as those used in Run H) in the absence of simulated annealing. The fact that this run was

successful in finding schedules for all of the problem instances listed in Table A5, including those

which caused Run H to become oscillatory, verifies that hybrid initialization eliminates the problem

of oscillations that result from initial overactivation. Although admissible schedules wer-e found

consistently by Run I, only 30% of the schedules were shorter than those found by the SAS

heuristic, and 36% were longer than the schedules generated by the heuristic. Seven of the 50

schedules produced in Run I are known to be optimal (i.e., minimum in length), and 35 are known

to be nonoptimal.15 Thus, the good performance that was obtained in the Monte-Carlo Run D'

(Section 7.4), and the relatively poor performance obtained in this multiple-instance simulation,

indicate that the performance of hybrid initialization is inconsistent.

The results of Runs D and H indicate that the conditionally-fixed-value form of initialization

may work extremely well for specific problem instances, but its tendency towards overactivation

may result in severe oscillation and in the inability to find an admissible schedule for other problem

instances. Run I demonstrates that the overactivation problem may be avoided by using hybrid

initialization, but the resulting schedules are not uniformly good. In the next subsection,

simulations show that, in general, significantly better results are obtained using the path-length-

dependent form of initialization.

15 The schedules that have been verified to be optimal have lengths equal to a tightened lower bound on the schedule
length (see Appendix B). The schedules that have been verified to be nonoptimal are longer than an admissible
schedule generated in a different simulation.

70

7.5.3 Evaluation of the Path-Length-Dependent Form of lnitialization

We have evaluated the use of the path-length-dependent form of initializationi in a number

of variants of the reduced SAS model by means of multiple-instance simulations that scheduled the

problem instances listed in Table A5. The best results were found using the same NN model that

was used in Run G of Section 7.4. In addition to using path-length-dependent initialization, this

model employed GSA, skewed randomization, and the nonmonotonic function J3n. In this

simulation, the value of Ns-max was set equal to 20; the remaining parameter values are listed in

Tables 7.4 and 7.5. Only two of the 50 schedules found by this model were longer than the

schedules found by the SAS heuristic. Eleven of the schedules have been shown to be optimal;

thirteen of the schedules are known to be nonoptimal. Six of the certified nonoptimal schedules

have length A* + 1 (for these problem instances, we have been able to ascertain that A* = 9).
Another five were verified to be nonoptimal by shorter admissible schedules that were generated by

a second simulation of the same NN model with Ns-ma = 40 (instead of 23). We know that the

remaining two nonoptimal schedules have lengths greater than A* because the schedules generated

by the SAS heuristic are shorter than those found by the NN. The fact that, for certain problem

instances, the NN found schedules whose lengths matched a lower bound 6 on the sequential

schedule length was used to ascertain the minimum schedule length A* for those communication

requirements.

This simulation serves to confirm the conclusions drawn in Section 7.4 and Section 7.5.2.

The NN model yielded better performance than the SAS heuristic (whereas 22% of the NN

schedules have been verified to be optimum arid 74% may be optimum, only 26% of the heuristic

schedules may be optimum but none have been verified; 64% of the NN schedules were shorter

than the corresponding schedules generated by the SAS heuristic) without the risk of incurring an

oscillatory NN state. As found in nonsequential-activation scheduling (Section 6.5), and in

Section 7.4, the use of the nonmonotonic function J3n also is beneficial to the NN performance.

Furthermore, this simulation demonstrates the model's ability to reliably generate sequential-

activation schedules of minimum, or nearly minimum, length for a diverse set of problem

instances.

16 Typically, this bound was Bsas + 1 slots, because, as discussed in Appendix B, it was found by contradiction

that the network could not be scheduled in Bsas slots. Therefore the bound was tightened to Bs s + 1 slots.

71

7.5.4 SAS of the Problem Instances with Known Minimum Schedule Lengths of 8 Slots

As discussed in Section 3.3, the SAS heuristic was able to find optimal 8-slot sequential-

activation schedules for the eight path sets listed in Table A4 in Appendix A. These problems are

more-highly constrained than the problems for which 9-slot schedules are needed, and present a
significant challenge to our methodology. We now discuss the use of our SAS NN model to

schedule the sequential activation of the links in these path sets. In a multiple-instance simulation

of this set of problem instances, it was reasonable to set Ns-ma to a large value (Ns.max = 500)
because the minimum schedule length is known for these problem instances, i.e., because Bsas =

A*. The NN model that was used in this multiple-instance simulation is the same as the one used
in Section 7.5.3; it used skewed randomization, the nonmonotonic function [n, and GSA.

The large value of Ns.max allowed the NN to find optimal schedules for each of the

problem instances. However, an average of 85.5 different initial states were required to find each

of these schedules. Four of the optimal schedules were each found within the first 25 different
initial states, 40 different starting points were required to optimally schedule one of the problem

instances, and two of the problem instances each required 100 different initial states. An optimal

schedule was not found for the eighth p.oblem instance until 352 different initial states had been

tried. This schedule is shown in Table 7.6.

In the schedule shown in Table 7.6, there are only 7 "open" cells out of the 192 cells

containing an entry (each of which represents a neuron). Thus, the schedule shown in Table 7.6 is

a 96.4% maximal schedule. The fact that this schedule is nearly maximal indicates that this
particular problem instance is highly constrained. (Typical 9-slot scheduling problems, even in

cases for which A* = 9, are not as highly constrained.) Thus we have again demonstrated the

capability of our NN problem formulation to solve highly-constrained problems.

The results of this simulation again demonstrate the ability of the SAS NN model to

produce optimal sequential-activation schedules. Since the SAS heuristic was also able to produce

optimal schedules for these eight path sets, we were not looking for improved performance, but

rather to see whether the SAS NN model was able to perform as well as the SAS heuristic.

Actually, the SAS heuristic was more efficient in the sense that many runs from different initial

states were often needed for the SAS NN model to find an optimal schedule. However, because

the communication requirements of Table A4 require nearly maximal schedules, we view this more

as an indication of good performance by the SAS heuristic for these particular exau1 ples, than of
poor SAS NN performance. Of course, the true power of the SAS NN model is more apparent in

those examples that it can schedule optimally, but which the SAS heuristic cannot.

72

Table 7.6. An optimal sequential-activation schedule for the eighth path set of Table A4
(X = Link activation, o = open for activation, b = link blockage,

i = ineligible for activation owin to the blockage of an adjacent link)
Indices Slot

Patht Link (SD, link) 1 2 3 4 5 6 7 8
(4->5) 1,1 bb

0 (5->13) 1,2 b b b X b
(13->20) 1,3 b b X b
(20->24) 114 i i b o X
(7->14) 2,1 X b b b b b

6 (14->15) , - b b b b b
(15->17) 2,3 Y b b o b b
(9->12) 3,1 b b I I 1
(12->7) 3,2 b X b b

11 (7->14) 3, -b b Y
(14->15) 3,4 b b b
(15->16) T,5 b T b X
(1->4) 4.1 b o X b o

12 4->5) 4,2 b b b b X
(5->13) 4,3 b b bb
(13->19) 4,4 b b b b X
(5->13) 5,1 X b b b b b

22 (13->12) 5,2 X b b b b b
(12->1l) 5,3 b o X o b b
(21->22) 6,1 T b i i
(22->20) 6,2 X b 1

32 (20->13) X b b b
(13->7) 6,4 X b b b(7->6) 6,5 ; b b bX
(1->2) 7,1 X b b
(2->3) ,2X b b

36 (3->6) 7,3 X b b
(6->8) 7,4 X b b
(8->9) 7,5 X b b
(9->I0) ,6X b b
(3->6) 8,1 ' b b b
(6->5) 8,2 X b b b

43 (5>1 4) 8,3 X b b7 b
(14->15) 8,4 X b b b
(15->18) 8,5 X o b b
(2->3) 9,1 b b b "X
(3->6) 9-,2 b b b X

48 (6->8) 9,3 b bF b X
(8->9) 9,4 b b bX
(9->12) 9,5 b b b X
(14->7) lO, l b b b b b X

50 (7->1I1) 10,2 i b b b bX
(I 1->8) 10,3 i b b b b X

t See Table A1I in Appendix A-

73

7.6 Conclusions on the SAS NN Model

The results of this section have demonstrated the ability of the NN model to find minimum-

or nearly minimum-length sequential-activation schedules for several difficult problem instances.

They also indicate that the NN model is robust and may perform well in a broad class of

scheduling problems.

For example, the minimum length of a sequential-activation schedule that satisfies the

communication requirements of Table 2.1 is 9 slots. All of the SAS NN models have been able to

find such a schedule, with varying degrees of efficiency. In Monte-Carlo simulations that

scheduled the sequential activation of the links in this problem instance, the best performance was

obtained in Run D (see Section 7.4), which produced 79% optimal solutions, and which used the

same NN model as was used in the multiple-instance Run H (Section 7.5.2). However, the model

used in Section 7.5.3, which is the same as that used in Run G of Section 7.4, gave the best

performance in the multiple-instance simulations. From these observations, we conclude that the

NN model that was used in Run G gives the best overall performance when examining diverse

problems. However, one of the other models might be better suited for a given problem instance;

e.g., the NN model that was used in Run E (Section 7.4) gave fairly poor results when scheduling

the requirements of Table 2.1 in Monte-Carlo simulations, but, in contrast, was the only model that

found optimal (9-slot) schedules for the 4th and 13th problem instances listed in Table A5 in

Appendix A.

8.0 THE JOINT ROUTING-SCHEDULING PROBLEM

In all types of communication networks, it has been a common practice to break up the

enormous total network design problem into subproblems, each of which can be studied in

isolation. This partitioning usually follows the "layered" structure of the OSI architecture (see

e.g., [29]). Thus, even though it is recognized that problems, issues, and design choices that

reside in separate layers are, in fact, interdependent, they are addressed separately; only at the final

"integration" stage is there an occasional attempt to recognize their influence on each other.

However, it is increasingly being recognized that in certain cases the interaction between

two or more factors from different layers may be so fundamental and strong that their joint effects

must be studied simultaneously to provide nearly-optimal, or even merely acceptable, performance.

In particular, in multihop radio networks the primary control issues are channel access and routing,

which are, in fact, intimately related to each other.

74

In this report we have addressed the use of contention-free link activation as the mechanism

for channel access. The link-scheduling function determines the capacities of the links in the

network, 17 one of the most critical factors in the generation of routing schemes. Conversely, the

routing scheme impacts directly on the traffic that must be supported over each of the network's

links.

Despite the intimate relationships that exist between these network control mechanisms,

few attempts have been made to address them jointly, e.g., see [6] and [9]. The formulation in

these papers is based on a continuous traffic model, in which packets are in effect subdivided into

infinitesimal pieces, and therefore does not apply directly to the case of discrete packets.

Additional background information on the joint routing-scheduling problem is provided in [15].

As a partial solution, a NN approach developed in [15, 16] starts with a set of multihop

paths between each of several SD pair. It attempts to pick those paths that result in "small"

numbers of shared links amongst the chosen paths so that "congestion" at these links is reduced,

permitting the generation of relatively short schedules. In such a formulation there is an objective

function (reflecting the desire to minimize congestion), but the slots in which the links are to be

activated are not determined This method was, in fact, used to select the unique paths such as

those enumerated in Table 2.1, which are used to determine the communication requirements for

the problem instances considered in this report. Minimization of congestion was chosen as the

performance measure because it was hypothesized that doing so would permit the generation of

short schedules. As we now discuss, this was not strictly true, but the schedule length required

for path sets with low congestion tended to be lower than that for path sets with high congestion.

To evaluate the hypothesis that minimization of congestion would permit the generation of

short schedules, the "congestion energy" of each of the 858 path sets that admit 7-slot

nonsequential-activation schedules (the problem instances in the union of sets (7, 7) and (7, >7))

was calculated. Congestion energy is the measure of the total number of shared links in the

network, taken on a pairwise basis, that was used in [15, 16] as a metric for the solutions to the

routing-to-minimize-congestion problem.' s In that study, a routing NN model, in which one

neuron was defined to correspond to each path, found solutions to the routing problem given by

Table Al in Appendix A with congestion energy values of 33.75 in each of 100 runs from different

initial states. This was actually the second lowest congestion energy possible; the minimum

congestion-energy value was 33.25. A second, more complex routing NN model, in which one

17 The number of times a link is activated per frame determines the capacity of that link.
1" This is the modified congestion energy that is discussed in Section 4.9 of [151.

75

neuron was defined to correspond to each link, was also considered. Although this "link-neuron"

model was unable to find low congestion-energy solutions as frequently as the "path-neuron"

model, it did find sets of paths with the minimum congestion-energy value of 33.25 in 3 of 100

runs from different initial states. A different version of the link-neuron model yielded more

consistent performance, although it was unable to discover any minimum congestion-energy

solutions. This version found solutions with the second lowest congestion-energy value (33.75)

in 17 of 100 runs from different initial states.

In Fig. 8.1, the cumulative mass function of these results is compared to that obtained by

considering all permutations of the paths in Table Al (exhaustive search), and to that obtained by

considering all permutations of the subset of paths in Table Al that consists of only the shortest

paths between each SD pair (shortest-path heuristic). The figure shows that the path sets that admit

minimum-length nonsequential-activation schedules do, indeed, tend to have low congestion

energy. However, the relationship is not monotonic: The 12 path sets with minimum congestion

energy (33.25) do, in fact, admit 7-slot schedules, but only 12 of the 30 path sets that have

congestion energy values of 33.75 admit 7-slot schedules. The congestion energy of the 858 path

sets that can be scheduled in 7 slots ranges from 33.25 to 46.25. However, there are a total of

498,975 path sets that have congestion energy in this range; thus, there are many path sets that

cannot be scheduled in 7 slots, but do have lower congestion-energy values than some of the path

sets that can be scheduled in 7 slots. The existence of relatively high congestion-energy solutions

that do admit optimum schedules, and of relatively low congestion-energy solutions that do not

admit optimum schedules indicates that the routing and the scheduling problems are not separable.

From a different viewpoint, we have found that the shortest-path heuristic generally yields

a set of routes with reasonably low congestion energy. For the problem posed by Table A1, the

set of paths chosen by the shortest-path heuristic (i.e., the path set with the lowest congestion

energy of any of the path sets in the restricted subset that includes only the shortest paths between

each SD pair) has a lower congestion-energy value than 56% of the path sets that can be scheduled

in 7 slots. However, it turns out that none of the path sets considered by the shortest-path heuristic

can be scheduled in 7 slots. In fact, the minimum-length nonsequential-activation schedule for any

of these path sets is 9 slots.

Although a path set that has a low congestion-energy value will probably admit a short

nonsequential-activation schedule, the above observations lead to the conclusion that the use of

congestion minimization as the sole criterion for route selection is inadequate to guarantee a

solution that can be optimally scheduled. However, for the routing-scheduling problem given by

Table AI, minimizing the maximum nodal degree in the network does yield a set of paths that

76

admits an optimal (7-slot) schedule. This phenomenon results from the absence - in any of the

858 path sets that have maximum nodal degrees of seven - of odd-length cycles that require more

than seven slots to schedule. As discussed in Section 3.1.1, odd-length cycles may require more

slots in the schedule than do the maximum-degree nodes. Since verifying the presence or absence

odd-length cycles is, in general, excessively computation intensive, simply minimizing the

maximum nodal degree is also inadequate to guarantee a solution that can be optimally scheduled

because the absence of odd-length cycles cannot be readily verified.

1.0'
Set (7, 7) U

£9 Set (7, >7) Shortest-Path
. Heuristic Exhaustive.c 0.8

.0 Search
0.7

0.6

S0.5

0.4

" 0.3

0.2

0.1

0.0
25 37.5 50 62.5 75 87.5 100 112.5 125

Congestion Energy
Figure 8.1. Congestion energy of the path sets that admit minimum length

schedules.

Thus, selecting routes to minimize congestion energy, or selecting routes to minimize the
maximum nodal degree in the network, are both reasonable heuristic methods that tend to yield

solutions that admit short, if not optimum, schedules. However, neither approach is capable of

delivering solutions that can guarantee minimal values of schedule length. In fact, it appears that

any approach that separates the routing problem from the scheduling problem cannot do so.

Hence, a joint formulation is needed to simultaneously select routes and schedule link activations

optimally.

The SAS problem is a restricted case of the NAS problem that would also benefit from a

joint routing-scheduling approach. Because link activations are restricted by the position of the

links in the paths, as well as by adjacent links, route selection is even more critical for the SAS

problem than it is for the NAS problem. Therefore, a joint routing-scheduling formulation is

77

necessary, and appropriate, for this problem as well. The joint formulation proposed in the next

subsection addresses either NAS or SAS.

8.1 Problem Formulation

Our problem formulation combines the path selection problem addressed in [15, i6i with

the scheduling problem d;M.usscd in this report. Thus the problem becomes the simultaneous

choice of one of these paths for each SD pair along with the determination of a sequential-activation

schedule for each link along this path, such that a schedule of minimum length with no scneduling

conflicts is produced. Sne we are considering discrete pac .zts, a combinatorial-optimization

formulaticn is again appropriate.

In the fc.,wing subsection we propose a NI, Ael to address the joint routing-scheduling

problem. The NN dtsigned for this application is extremely complex, and has not yet been

implemented completely. We acknowledge that the model description is not complete;

modifications and/or the incorporation of heuristics would almost definitely be needed to produce

optimal or nearly optimal results. The model has been included to illustrate the major

considerations that must be incorporated into a NN model for the joint routing-schedul;ng problem.

Problem Statement

Given a set of Nsd source-destination (SD) pairs and an equal number of sets of paths, the

ith of which contains Np(i) paths connecting SD pair i, and one unit 9 of traffic to be delivered

between each SD pair, select one path from each set of Np(i) paths that satisfies the communication

requirements and sche?'ile the activation of the links in these paths in a minimum number of slots.

As was done in addressing the scheduling problem, we may either specify sequential-activation

scheduling (SA S or nonsequential-activation scheduling (NAS).

8.2 A Joint Routing-Scheduling NN Model

We would like to satisfy the specified communication requirements in A slot,.20 For every

link in each of the paths connecting the Nsd SD pairs, we define A neurons, ea,.h corresponding to

one slot. We use four integers to index the neurons, i.e., neuron ijl represents slot I of the kth

link in thefAh path between SD pair i. As in the pure scheduling problems discussed earlier in this

report, the Lyapunov energy function consists only of constraint terms; there is no objective

19 The model may be easily extended to handle nonurit traffic; e.g., see [15, 16], Section 4.8.
20 Again, we may use either a fixed scheduk. length or the adjustable-length method (described in Section 4.5.3),
under which a penalty is incurred for using the higher-numbered slots.

78

function to be minimized. We have identified eight constraints that represent the desired objective

of the NN for the joint routing-scheduling problem. These constraints incorporate features of the

routing constraints developed in [15, 16] as well as the scheduling constraints discussed in this

report. In the following, we show the energy expression associated with each of the constraints; in

addition we show the corresponding equation-of-motion term, which is found by applying Eq. (7)

as was done in Section 4.4 for the pure scheduling problem.

R.1, Activate (select) links from no more than one path per SD pair:

N.dNP(i)Np(i)L(ii)L(iI) A A Vi.kV.- X X X X uw(,o
i=I j= nI k=1 o=1 1=1 p=1 L(in)

, j

which implies that

Np(i)L(in) A V.

1n= o=1 =1L

Here Np(i) is the number of paths between SD pair i, and L(ij) is the length of the jth path between

SD pair i.

RS2). Activate a total of exactly N i paths in the network:

Nd (i)L(Oj A V._
E2~ YYII k Nsd =0,

j=l k=1 1=1 L(ij)

which implies that

_" 2 -1 (N= Nm)L(m n)A

=vj Liy) (mlLnLL- pL(mn)Sd

Note that this formulation also serves as a constraint that requires the links in selected paths to be

activated in one and only one slot, and links in unselected paths to be off at all times.

79

RS3. Activate exactly one path per SD pair:

N~d (Np(i)L(i4) A 1..2E , Y, 0,-

i=1 _= t=11 L(ij)j =

which implies that

-1 (Np (iL) A V

This may be easily converted to a MLM constraint. This constraint, like RS2, also requires that

each link in selected paths be activated exactly once.

RS_4. Activate complete paths:

Nd Np(i) L(ij) IA A + A 2

E4=' Nsd- -I I X X =0=,ii(k+l)qJJ
J=l k=1 L(ij) - 0

where we define

t , k = J=,+ , k L(uy)

Then, the corresponding equation-of-motion term is given by

aN Np(m)L(mn) A A +)

Tk id = L(mn) - I

2(L(ij) -)

It appears that the sequentiality constraint could be, at least partially, enforced by a modified

formulation of this constraint given by:

80

N,,,(L(ij) .A ,+ 1=v(+,
E4 = Nxd - L, Lij) 1- 1 =0.

i=l j=l k=l

The use of this modified formulation would serve to reenforce constraint RS8 below, which is
direct extension of the sequentiality constraint used in the pure scheduling NN model.

RS5. Activate no conflicting links (no prigm conflicts):

N N Np(W Np(m)L(ij) L(,m) A

i=1 m= j= n=l k=1 0=1 1=1

which implies that

-a5= Nd NP(m(L(mn)

L"J ,I IAklA,,,,,WIV,,Iv, •

Here, as in Section 4.1, Aijk denotes the kth link in the jfh path between SD pair i, and

I [kfl nuwH'1, if ijk mno, and links Ak and A. o share 1 or 2 nodes
AjkA 0, if ijk = mno, or links A1jk and Am. are disjoint

This is the first of the true scheduling constraints (see Section 4.1). Note that it prohibits the

simultaneous activation of any adjacent links, including adjacent links in the same path, adjacent
links in different paths between the same SD pair, and adjacent links in paths between different SD

pairs.

RS6. Activate a total of Nz neurons:

The value of N. is not known a priori, but since we have had success using 03 < 1 in the

scheduling problem (which implies that the exact value of Nx is not critical in this constraint

formulation), this constraint might be implemented as:
(NdNpWiL(ii) A -N, 2 =0

=1 i k=1 1=1

81

where Nx may be set equal to an approximation of the number of required transmissions, such as

the mean path length x Nsd, or the sum of the shortest path lengths between each SD pair. Then,

the corresponding equation-of-motion term is given by

- "o -I t YY ,"
ijk n=l o=I p=1

RS2. Schedule all activations in slots numbered :5 BX:

N.d NP(i) L(ij) A

E7 = I IW(1)v =Q
i=1 j=I k=-1 i=1

which implies that

-E 7 = -W(I).

In the pure scheduling NN (Section 4.5.3), we used

W(1) (1 ~ - B,)', I > B,

1 0, otherwise

where Bs is a known lower bound on the schedule length. However, in the joint routing-

scheduling problem, we cannot readily calculate a near-tight bound because it is not known a priori

which paths will be chosen. An estimated bound can be obtained by assuming that the shortest

path between each of the SD pairs is selected, and calculating the schedule-length bound for the

resultant set of paths, as described in Section 3.1. Alternatively, in this setting it might be better to

use a function W(/) that is not a function of the bound, but rather strictly a function of the slot,

e.g., W(l) = I. The constraint would then no longer be an equality constraint (actually, it never

was). As such, it should probably be viewed as an objective function rather than as a constraint.

RS8, Sequentially activate the links in each path (i.e., link ijk must be activated before link ijo, for
o >k):

N'd Np(i) L(ij)-I L(ij) A o-k+I-IE =E EE YY ,1: Y j] = 0,
i=1 j=l k=1 o=-k+l 1=1 p=l

which implies that

82

-E L(ij) o-k+I-1 k-1 A

av.. - (i 18kLj) 1 ~YV40-(8k1)X' I V40PTVij _=k+1 p=1 o=1 p=max{1.1-k+o+1}

This term provides a positive contribution to the energy function whenever two neurons

that represent an out-of-sequence activation of the links in a path have nonzero output voltages.

Since it represents purely inhibitory contributions to the connection weights, its impact in

unselected paths can only be beneficial because it drives the neurons towards the desired zero state.

In applications where it is not necessary to maintain the sequential order of link activation, the E8

term is not included in the energy equation.

8.3 Alternate Models

The joint routing-scheduling NN model, besides requiring many more neurons than either

the routing or the scheduling models, is also more heavily interconnected than either of the models

that address the individual problems. Therefore, we address the question of whether the

techniques we have developed to reduce the complexity of the pure scheduling model, by

eliminating unnecessary neurons, can be applied to the joint problem as well.

The condensed NAS model presented in Section 4.5.1 is not applicable to the joint routing-

NAS problem because in this problem it is necessary to maintain the correspondence between a

link, its path, and its SD pair. Without specifying a single path between each SD pair, there is no

way to determine a priori the number of times that a physical link must be activated (Nx(p)).

However, the reduced SAS model may be applicable to the joint routing-SAS problem.

Application of this model would simply eliminate those neurons whose corresponding links cannot

be activated in the corresponding time slot in an admissible sequential-activation schedule, as

described in Section 4.5.2, thus achieving the desired reduction in NN complexity while also

potentially removing from the solution space a number of local minima that represent inadmissible

solutions.

9.0 CONCLUSIONS

In this report, we have addressed the use of Hopfield neural network (NN) models to solve

the problem of link activation, or scheduling, in multihop packet radio networks. Both

nonsequential-activation scheduling (NAS) and sequential-activation scheduling (SAS) models

have been studied. A key feature of our models is the use of the method of Lagrange multipliers,

which permits the connection weights to evolve dynamically along with the system state. This

approach was also used in our earlier studies of Hopfield NN routing models [15, 161. Other

83

important aspects of our models include the incorporation of heuristics into the equations of motion

and the use of Gaussian simulated annealing, both of which encourage the evolution of the NN to

optimal solutions.

Extensive simulation results have demonstrated the capability of our models to find

optimal, i.e., minimum-length, schedules in many cases for which our heuristic (i.e., non-NN)

approaches discussed in Section 3.2 were unable to do so. The degree of success obtained by the

NN models is related to the degree to which the problem is constrained. For example, in some

Monte-Carlo simulations of NAS problems, all of the solutions obtained from 100 different initial

states (random seeds) were optimal. For a very highly-constrained problem, in which a typical

schedule was 99.6% maximal, 21% of the solutions were optirnal. Although this may appear to be

a small number, it is notable that the NN model was able to determine optimal schedules for such a
highly-constrained problem, whereas the aforementioned purely-heuristic approach was unable to

do so. In studies of the SAS model, optimal solutions were found in as many as 79% of the runs.

Analysis of the sensitivity of our NN models to variations in parameter values and

communication requirements has shown that both models are fairly robust. Both the NAS and the

SAS models have produced optimal, or nearly optimal, schedules for a number of diverse problem

instances without the need to adjust the parameters to accommodate different communication

requireme its. Simulations have shown that the performance of the NN does depend on the set of

parameter values, but good performance is achieved over a broad range of these values. For

example, one of the most critical parameters is the additional bias current parameter 0. However,

by means of a series of Monte-Carlo simulations of the NAS model, it was found that good

performance (greater than 70% optimal solutions) was obtained with any value of P in the range

[0.366, 1.1221; 100% of the schedules found by the NN were optimal when a value of P in the

range [0.488, 0.854] was used.

In all of our NN models, the (expected) inability to guarantee a global optimum is mitigated

by the fact that repeated runs are possible from different initial conditions; thus the best solution

that is found can be chosen as the solution to the problem. As demonstrated by the multiple-

instance simulation of Section 7.5.4 that scheduled the eight problem instances that are known to

have minimum schedule lengths of 8 slots, the NN will often find an optimal schedule if allowed to

relax from a sufficient number of different initial states. Although the simulation runs begin in

random initial states, this method is not simply one of random search; system evolution is guided

by the equations of motion, which are derived from the energy function, which in turn is based on

the system constraints.

84

Our studies of routing and scheduling problems have verified our hypothesis that these two

network control functions are not independent, and that schemes should be developed that jointly

choose routes and link activation schedules. We have characterized the joint routing-scheduling

problem as a combinatorial-optimization problem, and we have outlined the major components of a

NN model for its solution. However, it would be difficult to simulate this model in software,

except for very small networks, because of the large number of neurons and interconnections that

are involved. It is hoped that future developments in the hardware design of NN components will

be able to incorporate the techniques developed in this study to permit the solution of complicated

communication network control problems of this type.

REFERENCES

1. D. J. Baker, A. Ephremides, and J. A. Flynn, "The Design and Simulation of a Mobile
Radio Network with Distributed Control," IEEE Journal on Selected Areas in
Communications, SAC-2 pp. 226 - 237, January 1984.

2. A. Ephremides, J. E. Wieselthier, and D. J. Baker, "A Design Concept for Reliable Mobile
Radio Networks with Frequency Hopping Signaling," Proceedings of the IEEE, 75-No. 1
pp. 56 - 73, January 1987.

3. M. J. Post, A. S. Kershenbaum, and P. E. Sarachik, "Scheduling Multihop CDMA
Networks in the Presence of Secondary Conflicts," Algorithmica, 4 pp. 365 - 393, 1989.

4. J. E. Wieselthier, "Code-Division Multiple-Access Techniques and Their Application to the
High-Frequency (HF) Intratask Force (ITF) Communication Network," NRL Report 9094,
Naval Research Laboratory, Washington, D. C., September 1988.

5. E. Arikan, "Some Complexity Results About Packet Radio Networks," IEEE Transactions
on Information Theory, IT-30 pp. 681 - 685, July 1984.

6. B. Hajek and G. Sasaki, "Link Scheduling in Polynomial Time," IEEE Transactions on
Information Theory, 34 pp. 910 - 917, September 1988.

7. L. Tassiulas, "Scheduling Problems in Multihop-Packet Radio Networks," Master's Thesis,
University of Maryland, 1989.

8. U. Mukherji, "A Periodic Scheduling Problem in Flow Control for Data Communication
Networks," IEEE Transactions on Information Theory, 35-No. 2 pp. 436 - 443, March
1989.

9. L. Tassiulas and A. Ephremides, "An Algorithm for Joint Routing and Scheduling in Radic
Networks," Proceedings of the American Control Conference, pp. 697 - 702, June 1989.

10. J. J. Hopfield and D. W. Tank, "'Neural' Computation of Decisions in Optimization
Problems," Biological Cybernetics, 52 pp. 141 - 152, 1985.

85

11. L. Tassiulas, A. Ephremides, and J. Gunn, "Solving Hard Optimization Problems Arising in
Packet Radio Networks Using Hopfield's Net," Proceedings of the 1989 Conference on
Information Sciences and Systems, pp. 603 - 608, March 1989.

12. C. M. Barnhart, J. E. Wieselthier, and A. Ephremides, "Neural Network Techniques for
Scheduling and Routing Problems in Multihop Radio Networks," to appear in The
MILCOM'91 Conference Proceedings, November 1991.

13. J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, "Sequential Link Activation in
Multihop Radio Networks by Means of Hopfield Neural Network Techniques," Proceedings
of the 1991 International Symposium on Information Theory, p. 155, June 1991.

14. C. M. Barnhart, J. E. Wieselthier, and A. Ephremides, "The Use of Hopfield Neural Nets in
Combinatorial-Optimization Problems Arising in Radio Communication Networks," The
Thirtieth International Meeting of the Institute of Management Sciences (TIMS), July 1991.

15. J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, "The Application of Hopfield Neural
Network Techniques to Problems of Routing and Scheduling in Packet Radio Networks,"
NRL Memorandum Report 6730, Naval Research Laboratory, Washington D. C.,
November 1990.

16. J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, "A Neural Network Approach to
Routing in Multihop Radio Networks," Proceedings of IEEE INFOCOM'91, pp. 1074 -
1083, April 1991.

17. J. E. Wieselthier, C. Barnhart, A. Ephremides, and W. Thoet, "Routing and Scheduling in
Packet Radio Networks: A Hopfield Network Approach," Proceedings of the 1990
Conference on Information Sciences and Systems, p. 185, March 1990.

18. R. G. Ogier, "A Decomposition Method for Optimal Link Scheduling," Proceedings if the
24th Allerton Conference, October 1986.

19. M. J. Post, P. E. Sarachik, and A. S. Kershenbaum, "A 'Biased Greedy' Algorithm for
Scheduling Multi-Hop Radio Networks," Proceedings of the '85 Conference on Information
Science and Systems, pp. 564 - 572, March 1985.

20. C. H. Papadimitriou and K. Steiglitz, Comoinatorial Optimization: Algorithms and
Complexity, Englewood Cliffs: Prentice-Hall, Inc., 1982.

21. J. C. Platt and A. H. Barr, "Constrained Differential Optimization," Proceedings of the IEEE
1987 Neural Information Processing Systems Conference, pp. 612 - 621, 1987.

22. E. Wacholder, J. Han, and R. C. Mann, "A Neural Network Algorithm for the Multiple
Traveling Salesmen Problem," Biological Cybernetics, 61 pp. 11 - 19, 1989.

23. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications,
Dordrecht: D. Reidel Publishing Company, 1987.

24. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by Simulated Annealing,"
Science, 220 pp. 671 - 680, May 13, 1983.

86

25. B. Hajek, "A Tutorial Survey of Theory and Applications of Simulated Annealing,"
Proceedings of the 24th IEEE Conference on Decision and Control, pp. 755 - 760, December
1985.

26. Y. Akiyama, A. Yamashita, M. Kajiura, and H. Aiso, "Combinatorial Optimization with
Gaussian Machines," Proceedings of the International Joint Conference on Neural Networks,
pp. 1-533 - 1-540, 1989.

27. Y. Akiyama, A. Yamashita, M. Kajiura, Y. Anzai, and H. Aiso, "The Gaussian Machine: A
Stochastic Neural Network for Solving Assignment Problems," Journal of Neural Network
Computing, 2-No. 3 pp. 43 - 51, Winter 1991.

28. D. E. Van den Bout and T. K. Miller III, "Graph Partitioning Using Annealed Neural
Networks," IEEE Transactions on Neural Networks, I pp. 192 - 203, June 1990.

29. A. S. Tanenbaum, Computer Networks, Second Edition, Englewood Cliffs, NJ: Prentice
Hall, 1988.

87

APPENDIX A

TABLES OF THE PATHS AND PROBLEM INSTANCES ASSOCIATED WITH

THE NETWORK OF FIGURE 2.1

Table Al. Listing of paths for the 24-node network of Fig. 2.1
SD pair Path Nodes Traversed

01 13 19 24
1 4 7 14 19 20 24

4 7- 2 3 6 11 12 13 20 24
3 4 7 13 20 24
4 4 5 7 19 M 24
5 4 3 6 8 9 9 12 13 20 4

2 7 14 15 17
2 7 11 17 13 19 14 15 17
8 9 11 7 14 15 16

2 9 8 6 5 14 15 16
10 9 12 13 19 14 15 16
1 2 9 12 7 14 15 16
12 1 4 5 13 19
3 1 2 3 6 7 14 19
14 1 4 7 14 19

4 15 1 2 3 6 11 12 13 19

16 1 4 5 14 19
17 1 4 7 13 19
18 1 2 3 6 8 9 12 13 19
19 1 2 3 6 5 14 19
20 5 6 11

521 5 7 11
S22 5 13 12 11

23 21=2 =20 =13 5 6

24 21 24 20 19 14 7 6
B 21 22 20 13 12 11 6
26 21 24 20 13 5 6

27 21 22 20 19 14 7 6
6 28 21 24 20 13 12 9 8 6

29 21 24 20 13 7 6
"30 21 22 20 19 14 5 6

31 21 24 20 13 12 11 6
32 21 22 20 13 7 6
33 21 - 24 20 19 14 5 6 _

3 2122 20 13 12 9 8 6
35 1 4 7 11 10

736 1 2 3 6 8 9 10
1, 37 1 4 5 13 12 9 10

38 1 2 3 6 11 10

88

Table Al. (continued)
SD pair Path Nodes Traversed

39 3 4 5 14 15 18
W0 3 6 7 14 15 18

8 41 3 6 11 12 13 19 14 15 18
42 3 4 7 14 15 18
47 3 6 5 14 15 18
44 3 6 8 9 12 I3 19 14 15 18
45 4 7

9 46 2 3 6 11 12
47 2 4 5 13 12
48 2 3 6 8 9
49 14 5 6 8

10 50 14 7 11 8
51 14 19 13 12 9 8

89

A Heavy Set of Communication Demands (Section 6.3)

The "augmented" problem instance listed in Table A2 consists of the paths connecting the

10 SD pair listed in Table 2.1 (Section 2.3) plus a set of paths that connects an additional 14 SD

pairs. The additional paths add no physical links to the network, but 22 more transmissions than

are required by the original problem of Table 2.1 are needed to satisfy the demand of Table A2. As

a starting point for the generation of the communication requirements for the augmented problem,

we considered one of the 8-slot schedules for the original problem. We then added a set of

additional link activations (and hence their corresponding paths) so that each slot in the resulting

schedule would be maximally scheduled.1 The schedule generated by the NAS heuristic for this

problem is 9 slots long, and the minimum nonsequential-activation schedule length is 8 slots.

Table A2. A heavy communication demand
Path no.! Path (nodes traversed)

SD pair 1: [4, 24] 0 4 5 13 20 24
SD pair 2: [7, 17] 6 7 14 15 17
NDpair 3: 9, 16] 10 9 12 13 19 14 15 16
S pair4: [1, 191 12 1 4 5 13 19
S pair 5: 5, 11] 20 5 6 11
SD pair 6: [21, 6]1 23 21 22 20 13 5 6
SD pair 7: 1, 1011 36 1 2 3 6 8 9 10
SD pair 8: [1 4 3 4 7 14 15 18
SD pair 9: [2, 12] 45 2 4 7 12
SD pair 10: 114, 8] 50 14 7 11 8
SD pair11: [1, 41 1 1 2 4
Spair 12: [1, 31] 1 2 3
Dpair 3: [2, 3 2 3

SDpair 14: 16,18] 16 15 18
SD pair 15: [8, 10] 1 8 9 10
S pair 16: [10, 8] 1 10 9 8
Spair 17: [8, 91] 8 9
S1pair 18: [7, 111 7 11SD pair 19: 21,201 21 22 2
S pair20: [20,21 20 22 21
S pair 21: 22 20

SD pair 22: [20,221 20 22
SDpair23: [5, Ill 20 5 6 11
SD pair 24" [19,14] 1 19 14

t See Table Al. SD pairs 11 through 22, and 24 are not listed in Table Al. Although the path connecting SD pair
23 is identical to that connecting SD pair 5, the two paths are considered to be distinct entities.

I Although the communication requirements for the augmented problem are based on a maximal schedule,
nonmaximal schedules (in which one or more additional links can be activated in one or more slots) satisfying the
same communication requirements also exist.

90

A Third Set of Communication Requirements (Section 6.3.1)

Table A3. A communication demand requiring 44 transmissions in its 28 physical links (minimum
nonsequential-activation schedule length is 7 slots, NAS heuristic schedule length is 8 slots).

Path no.t Path (nodes traversed)
SD pair 1: [4, 24] 0 4 5 13 20 24
SD pair2: [7, 17] 6 7 14 15 17
SDpair 3: [9, 16] 11 9 12 7 14 15 16
SD pair 4: [1, 19] 18 1 2 3 6 8 9 12 13 19
Spair 5: [5, 111 20 5 6 11
SD pair6: [21, 61 28 21 24 20 13 12 9 8 6
SD pair 7: [1, 10] 35 1 4 7 11 10

D iair 8: [3, 18 39 3 4 5 14 15 18
SD'pair 9: 2, 121 45 " 2 4 7 12
SD pair 10: [14, 14 5 6 8

* See Table Al.

Sequences of Problem Instances

In the following three tables, sequences of problem instances are listed. Rather than

enumerating each of the nodes traversed in every path for each problem instance, the ten paths in

each of the problem instances are listed by their path numbers, which corre-pond to the paths listed

in Table Al. The nodes traversed in each of these numbered paths are listed in Table Al.

Table A4. The set of 8 problem instances with Bsas =8 and SAS heuristic
schedule lenghs of 8 slots (Section 7.5.1).

Path SD Pair (pth numbert)
Set # 1 2 3 4 5 6 7 8 9 10

162 11 12 22 5 36 39 45 49
- -3 -6 11 12 22 3 36 39 45 49

3 3 67 12 T 2 25 36 42 45 49
4 3 6 9 12 22 31 36 42 45 49
5 6 9 12 22 28 38 42 45 49

_ _ 3 6 9 12 22 34 38 T2 45 497 0 6 11 1 22 29 36 43 48 50
8 0 6 11 12 22 32 36 43 48 50

* See Table Al.

91

Table AS. A partial listing of set (7, >7) (Bnas = 7, NAS heuristic schedule
length > 7 slots, Sections 6.5 and 7.5)

Path SD Pair (pat number, see Table 1)
Set # 1 2 3 4 5 6 7 8 9 10

1 0 6 11 18 20 28 35 39 45 49
2 2 6 11 12 21 25 36 39 45 49
3 5 6 11 12 21 25 36 39 45 49
4 0 6 8 15 21 25 36 39 45 49
5 0 6 11 15 21 25 36 39 45 49
6 0 6 8 18 21 25 36 39 45 49
7 0 6 11 18 21 25 36 39 45 49
8 2 6 11 12 21 28 36 39 45 49
9 5 6 11 12 21 28 36 39 45 49
10 0 6 11 15 21 28 36 39 45 49
11 0 6 8 18 21 28 36 39 45 49
12 5 6 11 12 21 31 36 39 45 49
13 0 6 8 15 21 31 36 39 45 49
14 0 6 11 15 21 31 36 39 45 49
15 0 6 8 18 21 31 36 39 45 49
16 0 6 11 18 21 31 36 39 45 49
17 5 6 8 12 21 34 36 39 45 49
18 2 6 11 12 21 34 36 39 45 49
19 5 6 11 12 21 34 36 39 45 49
20 0 6 8 15 21 34 36 39 45 49
21 0 6 11 15 21 34 36 39 45 49
22 0 6 11 18 21 34 36 39 45 49
23 0 6 11 15 21 25 38 39 45 49
24 0 6 8 18 21 25 38 39 45 49
25 0 6 11 18 21 25 38 39 45 49
26 0 6 8 15 21 28 38 39 45 49
27 0 6 11 15 21 28 38 39 45 49
2? 0 6 8 18 21 28 38 39 45 49
29 0 6 11 18 21 28 38 39 45 49
30 0 6 11 15 21 31 38 39 45 49
31 0 6 8 18 21 31 38 39 45 49
32 0 6 11 18 21 31 38 39 45 49
33 5 6 8 12 21 34 38 39 45 49
34 0 6 8 15 21 34 38 39 45 49
35 0 6 11 15 21 34 38 39 45 49
36 0 6 8 18 21 34 38 39 45 49
37 0 6 11 18 21 25 35 39 46 49
38 3 6 8 12 20 28 35 39 46 49
39 0 6 8 17 20 28 35 39 46 49
40 5 6 11 12 21 28 35 39 46 49
41 0 6 8 18 21 28 35 39 46 49
42 0 6 : 18 21 28 35 39 46 49
43 0 6 11 18 21 31 35 39 46 49
44 3 6 8 12 20 34 35 39 46 49
45 0 6 8 17 20 34 35 39 46 49
46 5 6 11 12 21 34 35 39 46 49
47 0 6 8 18 21 34 35 39 46 49
48 0 6 11 18 21 34 35 39 46 49
49 3 6 8 12 21 25 36 39 46 49
50 3 6 11 12 21 25 36 39 46 49

92

Table A6. A partial listing of set (7, 7) (Bnas = 7, NAS heuristic schedule
length = 7 slots, Section 6.5)

Path SD Pair (path number see TabeA 1)
Se # 1 2 3 4 5 6 7 8 9 1011 15 20 25 35 39 45 49
2 0 6 8 18 20 25 35 39 45 49
3 0 6 11 18 20 25 35 39 45 49
4 0 6 8 15 20 28 35 39 45 49
5 0 6 11 15 20 28 35 39 45 49
6 0 6 8 18 20 28 35 39 45 49
7 0 6 11 15 20 31 35 39 45 49
8 0 6 8 18 20 31 35 39 45 49
9 0 6 11 18 20 31 35 39 45 49
10 0 6 8 15 20 34 35 39 45 49
11 0 6 11 15 20 34 35 39 45 49
12 0 6 8 18 20 34 35 39 45 49
13 0 6 11 18 20 34 35 39 45 49
14 3 6 8 12 20 25 36 39 45 49
15 3 6 11 12 20 25 36 39 45 49
16 0 6 8 17 20 25 36 39 45 49
17 0 6 11 17 20 25 36 39 45 49
18 2 6 8 12 21 25 36 39 45 49

19 5 6 8 12 21 25 36 39 45 49
20 3 6 8 12 20 28 36 39 45 49
21 3 6 11 12 20 28 36 39 45 49
22 0 6 8 17 20 28 36 39 45 49
23 0 6 11 17 20 28 36 39 45 49
24 2 6 8 12 21 28 36 39 45 49
25 5 6 8 12 21 28 36 39 45 49
26 0 6 8 15 21 28 36 39 45 49
27 0 6 11 18 21 28 36 39 45 49
28 3 6 8 12 20 31 36 39 45 49
29 3 6 11 12 20 31 36 39 45 49
30 0 6 8 17 20 31 36 39 45 49
31 0 6 11 17 20 31 36 39 45 49
32 2 6 8 12 21 31 36 39 45 49
33 5 6 8 12 21 31 36 39 45 49
34 2 6 11 12 21 31 36 39 45 49
35 3 6 8 12 20 34 36 39 45 49
36 3 6 11 12 20 34 36 39 45 49
37 0 6 8 17 20 34 36 39 45 49
38 0 6 11 17 20 34 36 39 45 49
39 2 6 8 12 21 34 36 39 45 49
40 0 6 8 18 21 34 36 39 45 49
41 3 6 8 12 20 25 38 39 45 49
42 3 6 11 12 20 25 38 39 45 49
43 0 6 8 17 20 25 38 39 45 49
44 0 6 11 17 20 25 38 39 45 49
45 5 6 8 12 21 25 38 39 45 49
46 2 6 11 12 21 25 38 39 45 49
47 5 6 11 12 21 25 38 39 45 49
48 3 6 8 12 20 28 38 39 45 49
49 3 6 11 12 20 28 38 39 45 49
50 0 6 8 17 20 28 38 39 45 49

93

APPENDIX B

TIGHTENING THE SAS BOUND (AN EXAMPLE)

For several of the problem instances evaluated in this report, we have been able to tighten

the sequential-activation schedule length lower bound Bsas by contradiction. That is, we assume

that an admissible sequential-activation schedule of length Bsas does exist. Then, in the process of
trying to find such a schedule, we show that an admissible Bsas-slot schedule cannot exios.

Therefore, the minimum sequential-activation schedule length A* must be greater than Bsas, and

the bound can be tightened by one.

For example, the problem instance given by Table A3 in Appendix A has Bsas = 8 slots.

Table B 1 shows an effort to find an 8-slot sequential-activation schedule for this problem instance.

As can be seen in the table, the path connecting the fourth SD pair is 8 hops in length. Therefore,
to maintain the sequentiality requirement in an 8-slot schedule, the first link of this path must be

activated in the first slot, the second link must be activated in the second slot, and so on. Thus, we
enter "X" in the eight cells as shown in the table. These now-scheduled link activations block the

activation of certain other links that share nodes with the activated links in the assigned slot. We

enter "b" in these cells that would result in a primary conflict if their associated link were activated
in that slot. Note that this results in a complete blockage of link 6,5 (the fifth link in the path
between SD pair 6). Since there is no slot in which link 6,5 may be legally activated in an 8-slot
schedule, the minimum sequential-activation schedule length for this problem must be greater than

8 slots. Therefore, we may safely say that a tightened lower bound for this problem is 9 slots. It
turns out that A* = 9 slots, as verified by the existence of a feasible 9-slot schedule found by the

reduced SAS NN model for this problem.

94

Table B 1. An effort find an 8-slot sequenial-ctvation schedule for the requirements of Table A3
Indices Slot

Patht Link (SD, link) T3 4 5 6 7 8
(4->5) 1,1 0 0 0 0 0

0 (5->13) 1,2 0 0 0 0 0
(13->20) 1,3 0 0 o o b
(20->24) 1,4 0 0 o 0 0
(7->14) 2.1 0 0 0 0 0 0

6 (14->15) 2,2 o o o o o o
(15->17) 2,3 0 0 0 0 0 0
(9->12) 3,1 o -0 0
(12->7) 3,0 0 0 0

11 (7->14) 3,3 0 0 0 0
(14->15) 3,4 0 0 0 0
(15->16) 35 0 0 0 0
(1->2) 4,1 X
(2->3) 4,2
(3->6) 4,3 X

18 (6->8) 4,4 X
(8->9) 4,5 X
(9->12) 4,6 X
(12->13) 4,7 X
(13->19) 4,8 X

20 (5->6) 5,1 o o b b o o o
(6->11) 5,2 o b b o o o o
(21->24) 6,1 0 0
(24->20) 6,2 0 0(20->13) 6,3 o o

28 (13->12) 6,4

(12->9) 6,5 b b
(9->8) 6,6 b o
(8->6) 6,7 o o
(1->4) 7,1 b o o o o

35 (4->7) 7,2 0 o0 0 0

(7-> 11) 7,3 o o 0 0 0
(11->10) 7,4 0 0 0 0 0
(3->4) 8,1 o b b o
(4->5) 8,2 o0 0 0

39 (5->14) 8,3 0 0 0 0
(14->15) 8,4 o0 0 0
(15->18) 8,5 0 0 0 0
(2->4) 9,1 b b o o o o

45 (4->7) 9,2 0 0 0 0 0 0
(7->12) 9,3 o o o b b o
(14->5) 10,1 o 0 0 o 0 0

49 (5->6) 1U,2 o b b o o o
L (6->8) 10,3 b b b 0

t See Table A in Appendix A.

95

